ViTmiX: Vision Transformer Explainability Augmented by Mixed Visualization Methods
- URL: http://arxiv.org/abs/2412.14231v1
- Date: Wed, 18 Dec 2024 18:18:19 GMT
- Title: ViTmiX: Vision Transformer Explainability Augmented by Mixed Visualization Methods
- Authors: Eduard Hogea, Darian M. Onchis, Ana Coporan, Adina Magda Florea, Codruta Istin,
- Abstract summary: We present a hybrid approach that mixes multiple explainability techniques to enhance interpretability of ViT models.
Our experiments reveal that this hybrid approach significantly improves the interpretability of ViT models compared to individual methods.
To quantify the explainability gain, we introduced a novel post-hoc explainability measure by applying the Pigeonhole principle.
- Score: 1.1650821883155187
- License:
- Abstract: Recent advancements in Vision Transformers (ViT) have demonstrated exceptional results in various visual recognition tasks, owing to their ability to capture long-range dependencies in images through self-attention mechanisms. However, the complex nature of ViT models requires robust explainability methods to unveil their decision-making processes. Explainable Artificial Intelligence (XAI) plays a crucial role in improving model transparency and trustworthiness by providing insights into model predictions. Current approaches to ViT explainability, based on visualization techniques such as Layer-wise Relevance Propagation (LRP) and gradient-based methods, have shown promising but sometimes limited results. In this study, we explore a hybrid approach that mixes multiple explainability techniques to overcome these limitations and enhance the interpretability of ViT models. Our experiments reveal that this hybrid approach significantly improves the interpretability of ViT models compared to individual methods. We also introduce modifications to existing techniques, such as using geometric mean for mixing, which demonstrates notable results in object segmentation tasks. To quantify the explainability gain, we introduced a novel post-hoc explainability measure by applying the Pigeonhole principle. These findings underscore the importance of refining and optimizing explainability methods for ViT models, paving the way to reliable XAI-based segmentations.
Related papers
- Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
We propose a novel approach to explain the behavior of a black-box model under feature shifts.
We refer to our method that combines concepts from Optimal Transport and Shapley Values as Explanatory Performance Estimation.
arXiv Detail & Related papers (2024-08-24T18:28:19Z) - Probabilistic Conceptual Explainers: Trustworthy Conceptual Explanations for Vision Foundation Models [6.747023750015197]
This paper proposes five desiderata for explaining ViTs -- faithfulness, stability, sparsity, multi-level structure, and parsimony.
We introduce a variational Bayesian explanation framework, dubbed ProbAbilistic Concept Explainers (PACE)
arXiv Detail & Related papers (2024-06-18T14:17:57Z) - Explaining Text Similarity in Transformer Models [52.571158418102584]
Recent advances in explainable AI have made it possible to mitigate limitations by leveraging improved explanations for Transformers.
We use BiLRP, an extension developed for computing second-order explanations in bilinear similarity models, to investigate which feature interactions drive similarity in NLP models.
Our findings contribute to a deeper understanding of different semantic similarity tasks and models, highlighting how novel explainable AI methods enable in-depth analyses and corpus-level insights.
arXiv Detail & Related papers (2024-05-10T17:11:31Z) - The Common Stability Mechanism behind most Self-Supervised Learning
Approaches [64.40701218561921]
We provide a framework to explain the stability mechanism of different self-supervised learning techniques.
We discuss the working mechanism of contrastive techniques like SimCLR, non-contrastive techniques like BYOL, SWAV, SimSiam, Barlow Twins, and DINO.
We formulate different hypotheses and test them using the Imagenet100 dataset.
arXiv Detail & Related papers (2024-02-22T20:36:24Z) - Revealing Multimodal Contrastive Representation Learning through Latent
Partial Causal Models [85.67870425656368]
We introduce a unified causal model specifically designed for multimodal data.
We show that multimodal contrastive representation learning excels at identifying latent coupled variables.
Experiments demonstrate the robustness of our findings, even when the assumptions are violated.
arXiv Detail & Related papers (2024-02-09T07:18:06Z) - Interpretability-Aware Vision Transformer [13.310757078491916]
Vision Transformers (ViTs) have become prominent models for solving various vision tasks.
We introduce a novel training procedure that inherently enhances model interpretability.
IA-ViT is composed of a feature extractor, a predictor, and an interpreter, which are trained jointly with an interpretability-aware training objective.
arXiv Detail & Related papers (2023-09-14T21:50:49Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - eX-ViT: A Novel eXplainable Vision Transformer for Weakly Supervised
Semantic Segmentation [19.311318200149383]
We propose a novel vision transformer dubbed the eXplainable Vision Transformer (eX-ViT)
eX-ViT is able to jointly discover robust interpretable features and perform the prediction.
arXiv Detail & Related papers (2022-07-12T07:43:29Z) - Beyond Explaining: Opportunities and Challenges of XAI-Based Model
Improvement [75.00655434905417]
Explainable Artificial Intelligence (XAI) is an emerging research field bringing transparency to highly complex machine learning (ML) models.
This paper offers a comprehensive overview over techniques that apply XAI practically for improving various properties of ML models.
We show empirically through experiments on toy and realistic settings how explanations can help improve properties such as model generalization ability or reasoning.
arXiv Detail & Related papers (2022-03-15T15:44:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.