Fake News Detection: Comparative Evaluation of BERT-like Models and Large Language Models with Generative AI-Annotated Data
- URL: http://arxiv.org/abs/2412.14276v2
- Date: Fri, 20 Dec 2024 12:45:58 GMT
- Title: Fake News Detection: Comparative Evaluation of BERT-like Models and Large Language Models with Generative AI-Annotated Data
- Authors: Shaina Raza, Drai Paulen-Patterson, Chen Ding,
- Abstract summary: Fake news poses a significant threat to public opinion and social stability in modern society.<n>This study presents a comparative evaluation of BERT-like encoder-only models and autoregressive decoder-only large language models (LLMs) for fake news detection.
- Score: 3.7409402247241643
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fake news poses a significant threat to public opinion and social stability in modern society. This study presents a comparative evaluation of BERT-like encoder-only models and autoregressive decoder-only large language models (LLMs) for fake news detection. We introduce a dataset of news articles labeled with GPT-4 assistance (an AI-labeling method) and verified by human experts to ensure reliability. Both BERT-like encoder-only models and LLMs were fine-tuned on this dataset. Additionally, we developed an instruction-tuned LLM approach with majority voting during inference for label generation. Our analysis reveals that BERT-like models generally outperform LLMs in classification tasks, while LLMs demonstrate superior robustness against text perturbations. Compared to weak labels (distant supervision) data, the results show that AI labels with human supervision achieve better classification results. This study highlights the effectiveness of combining AI-based annotation with human oversight and demonstrates the performance of different families of machine learning models for fake news detection
Related papers
- An exploration of features to improve the generalisability of fake news detection models [0.0]
Existing NLP and supervised Machine Learning methods perform well under cross-validation but struggle to generalise across datasets.
This issue stems from coarsely labelled training data, where articles are labelled based on their publisher.
This study demonstrates that meaningful features can still be extracted from coarsely labelled data to improve real-world robustness.
arXiv Detail & Related papers (2025-02-27T17:26:56Z) - READ: Reinforcement-based Adversarial Learning for Text Classification with Limited Labeled Data [7.152603583363887]
Pre-trained transformer models such as BERT have shown massive gains across many text classification tasks.
This paper proposes a method that encapsulates reinforcement learning-based text generation and semi-supervised adversarial learning approaches.
Our method READ, Reinforcement-based Adversarial learning, utilizes an unlabeled dataset to generate diverse synthetic text through reinforcement learning.
arXiv Detail & Related papers (2025-01-14T11:39:55Z) - A Self-Learning Multimodal Approach for Fake News Detection [35.98977478616019]
We introduce a self-learning multimodal model for fake news classification.<n>The model leverages contrastive learning, a robust method for feature extraction that operates without requiring labeled data.<n>Our experimental results on a public dataset demonstrate that the proposed model outperforms several state-of-the-art classification approaches.
arXiv Detail & Related papers (2024-12-08T07:41:44Z) - Are LLMs Better than Reported? Detecting Label Errors and Mitigating Their Effect on Model Performance [21.926934384262594]
Large language models (LLMs) offer new opportunities to enhance the annotation process.
We compare expert, crowd-sourced, and our LLM-based annotations in terms of agreement, label quality, and efficiency.
Our findings reveal a substantial number of label errors, which, when corrected, induce a significant upward shift in reported model performance.
arXiv Detail & Related papers (2024-10-24T16:27:03Z) - Enhancing Text Classification through LLM-Driven Active Learning and Human Annotation [2.0411082897313984]
This study introduces a novel methodology that integrates human annotators and Large Language Models.
The proposed framework integrates human annotation with the output of LLMs, depending on the model uncertainty levels.
The empirical results show a substantial decrease in the costs associated with data annotation while either maintaining or improving model accuracy.
arXiv Detail & Related papers (2024-06-17T21:45:48Z) - A Simple yet Efficient Ensemble Approach for AI-generated Text Detection [0.5840089113969194]
Large Language Models (LLMs) have demonstrated remarkable capabilities in generating text that closely resembles human writing.
It is essential to build automated approaches capable of distinguishing between artificially generated text and human-authored text.
We propose a simple yet efficient solution by ensembling predictions from multiple constituent LLMs.
arXiv Detail & Related papers (2023-11-06T13:11:02Z) - Harnessing the Power of LLMs: Evaluating Human-AI Text Co-Creation
through the Lens of News Headline Generation [58.31430028519306]
This study explores how humans can best leverage LLMs for writing and how interacting with these models affects feelings of ownership and trust in the writing process.
While LLMs alone can generate satisfactory news headlines, on average, human control is needed to fix undesirable model outputs.
arXiv Detail & Related papers (2023-10-16T15:11:01Z) - Bring Your Own Data! Self-Supervised Evaluation for Large Language
Models [52.15056231665816]
We propose a framework for self-supervised evaluation of Large Language Models (LLMs)
We demonstrate self-supervised evaluation strategies for measuring closed-book knowledge, toxicity, and long-range context dependence.
We find strong correlations between self-supervised and human-supervised evaluations.
arXiv Detail & Related papers (2023-06-23T17:59:09Z) - Label Noise-Resistant Mean Teaching for Weakly Supervised Fake News
Detection [93.6222609806278]
We propose a novel label noise-resistant mean teaching approach (LNMT) for weakly supervised fake news detection.
LNMT leverages unlabeled news and feedback comments of users to enlarge the amount of training data.
LNMT establishes a mean teacher framework equipped with label propagation and label reliability estimation.
arXiv Detail & Related papers (2022-06-10T16:01:58Z) - Are We Really Making Much Progress in Text Classification? A Comparative Review [5.33235750734179]
We analyze various methods for single-label and multi-label text classification across well-known datasets.
We highlight the superiority of discriminative language models like BERT over generative models for supervised tasks.
arXiv Detail & Related papers (2022-04-08T09:28:20Z) - Generative Modeling Helps Weak Supervision (and Vice Versa) [87.62271390571837]
We propose a model fusing weak supervision and generative adversarial networks.
It captures discrete variables in the data alongside the weak supervision derived label estimate.
It is the first approach to enable data augmentation through weakly supervised synthetic images and pseudolabels.
arXiv Detail & Related papers (2022-03-22T20:24:21Z) - Revisiting Self-Training for Few-Shot Learning of Language Model [61.173976954360334]
Unlabeled data carry rich task-relevant information, they are proven useful for few-shot learning of language model.
In this work, we revisit the self-training technique for language model fine-tuning and present a state-of-the-art prompt-based few-shot learner, SFLM.
arXiv Detail & Related papers (2021-10-04T08:51:36Z) - InfoBERT: Improving Robustness of Language Models from An Information
Theoretic Perspective [84.78604733927887]
Large-scale language models such as BERT have achieved state-of-the-art performance across a wide range of NLP tasks.
Recent studies show that such BERT-based models are vulnerable facing the threats of textual adversarial attacks.
We propose InfoBERT, a novel learning framework for robust fine-tuning of pre-trained language models.
arXiv Detail & Related papers (2020-10-05T20:49:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.