Enhancing Text Classification through LLM-Driven Active Learning and Human Annotation
- URL: http://arxiv.org/abs/2406.12114v1
- Date: Mon, 17 Jun 2024 21:45:48 GMT
- Title: Enhancing Text Classification through LLM-Driven Active Learning and Human Annotation
- Authors: Hamidreza Rouzegar, Masoud Makrehchi,
- Abstract summary: This study introduces a novel methodology that integrates human annotators and Large Language Models.
The proposed framework integrates human annotation with the output of LLMs, depending on the model uncertainty levels.
The empirical results show a substantial decrease in the costs associated with data annotation while either maintaining or improving model accuracy.
- Score: 2.0411082897313984
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the context of text classification, the financial burden of annotation exercises for creating training data is a critical issue. Active learning techniques, particularly those rooted in uncertainty sampling, offer a cost-effective solution by pinpointing the most instructive samples for manual annotation. Similarly, Large Language Models (LLMs) such as GPT-3.5 provide an alternative for automated annotation but come with concerns regarding their reliability. This study introduces a novel methodology that integrates human annotators and LLMs within an Active Learning framework. We conducted evaluations on three public datasets. IMDB for sentiment analysis, a Fake News dataset for authenticity discernment, and a Movie Genres dataset for multi-label classification.The proposed framework integrates human annotation with the output of LLMs, depending on the model uncertainty levels. This strategy achieves an optimal balance between cost efficiency and classification performance. The empirical results show a substantial decrease in the costs associated with data annotation while either maintaining or improving model accuracy.
Related papers
- How Hard is this Test Set? NLI Characterization by Exploiting Training Dynamics [49.9329723199239]
We propose a method for the automated creation of a challenging test set without relying on the manual construction of artificial and unrealistic examples.
We categorize the test set of popular NLI datasets into three difficulty levels by leveraging methods that exploit training dynamics.
When our characterization method is applied to the training set, models trained with only a fraction of the data achieve comparable performance to those trained on the full dataset.
arXiv Detail & Related papers (2024-10-04T13:39:21Z) - PoliPrompt: A High-Performance Cost-Effective LLM-Based Text Classification Framework for Political Science [1.6967824074619953]
This paper introduces a three-stage in-context learning approach that leverages large language models to improve classification accuracy.
We validate our approach using datasets from the BBC news reports, Kavanaugh Supreme Court confirmation, and 2018 election campaign ads.
The results show significant improvements in classification F1 score (+0.36 for zero-shot classification) with manageable economic costs.
arXiv Detail & Related papers (2024-09-02T21:05:31Z) - Self-training Large Language Models through Knowledge Detection [26.831873737733737]
Large language models (LLMs) often necessitate extensive labeled datasets and training compute to achieve impressive performance across downstream tasks.
This paper explores a self-training paradigm, where the LLM autonomously curates its own labels and selectively trains on unknown data samples.
Empirical evaluations demonstrate significant improvements in reducing hallucination in generation across multiple subjects.
arXiv Detail & Related papers (2024-06-17T07:25:09Z) - Advancing Anomaly Detection: Non-Semantic Financial Data Encoding with LLMs [49.57641083688934]
We introduce a novel approach to anomaly detection in financial data using Large Language Models (LLMs) embeddings.
Our experiments demonstrate that LLMs contribute valuable information to anomaly detection as our models outperform the baselines.
arXiv Detail & Related papers (2024-06-05T20:19:09Z) - Augmenting NER Datasets with LLMs: Towards Automated and Refined Annotation [1.6893691730575022]
This research introduces a novel hybrid annotation approach that synergizes human effort with the capabilities of Large Language Models (LLMs)
By employing a label mixing strategy, it addresses the issue of class imbalance encountered in LLM-based annotations.
This study illuminates the potential of leveraging LLMs to improve dataset quality, introduces a novel technique to mitigate class imbalances, and demonstrates the feasibility of achieving high-performance NER in a cost-effective way.
arXiv Detail & Related papers (2024-03-30T12:13:57Z) - CoAnnotating: Uncertainty-Guided Work Allocation between Human and Large
Language Models for Data Annotation [94.59630161324013]
We propose CoAnnotating, a novel paradigm for Human-LLM co-annotation of unstructured texts at scale.
Our empirical study shows CoAnnotating to be an effective means to allocate work from results on different datasets, with up to 21% performance improvement over random baseline.
arXiv Detail & Related papers (2023-10-24T08:56:49Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
We present a comprehensive survey of bias evaluation and mitigation techniques for large language models (LLMs)
We first consolidate, formalize, and expand notions of social bias and fairness in natural language processing.
We then unify the literature by proposing three intuitive, two for bias evaluation, and one for mitigation.
arXiv Detail & Related papers (2023-09-02T00:32:55Z) - Bring Your Own Data! Self-Supervised Evaluation for Large Language
Models [52.15056231665816]
We propose a framework for self-supervised evaluation of Large Language Models (LLMs)
We demonstrate self-supervised evaluation strategies for measuring closed-book knowledge, toxicity, and long-range context dependence.
We find strong correlations between self-supervised and human-supervised evaluations.
arXiv Detail & Related papers (2023-06-23T17:59:09Z) - Active Learning for Abstractive Text Summarization [50.79416783266641]
We propose the first effective query strategy for Active Learning in abstractive text summarization.
We show that using our strategy in AL annotation helps to improve the model performance in terms of ROUGE and consistency scores.
arXiv Detail & Related papers (2023-01-09T10:33:14Z) - Assisted Text Annotation Using Active Learning to Achieve High Quality
with Little Effort [9.379650501033465]
We propose a tool that enables researchers to create large, high-quality, annotated datasets with only a few manual annotations.
We combine an active learning (AL) approach with a pre-trained language model to semi-automatically identify annotation categories.
Our preliminary results show that employing AL strongly reduces the number of annotations for correct classification of even complex and subtle frames.
arXiv Detail & Related papers (2021-12-15T13:14:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.