Covariances for Free: Exploiting Mean Distributions for Federated Learning with Pre-Trained Models
- URL: http://arxiv.org/abs/2412.14326v2
- Date: Tue, 04 Feb 2025 15:11:28 GMT
- Title: Covariances for Free: Exploiting Mean Distributions for Federated Learning with Pre-Trained Models
- Authors: Dipam Goswami, Simone Magistri, Kai Wang, Bartłomiej Twardowski, Andrew D. Bagdanov, Joost van de Weijer,
- Abstract summary: Recent works have investigated the use of first-order statistics and second-order statistics to aggregate local client data distributions at the server.
We propose a training-free method based on an unbiased estimator of class covariance matrices.
Our method, which only uses first-order statistics in the form of class means communicated by clients to the server, incurs only a fraction of the communication costs required by methods based on communicating second-order statistics.
- Score: 19.74434265098346
- License:
- Abstract: Using pre-trained models has been found to reduce the effect of data heterogeneity and speed up federated learning algorithms. Recent works have investigated the use of first-order statistics and second-order statistics to aggregate local client data distributions at the server and achieve very high performance without any training. In this work we propose a training-free method based on an unbiased estimator of class covariance matrices. Our method, which only uses first-order statistics in the form of class means communicated by clients to the server, incurs only a fraction of the communication costs required by methods based on communicating second-order statistics. We show how these estimated class covariances can be used to initialize a linear classifier, thus exploiting the covariances without actually sharing them. When compared to state-of-the-art methods which also share only class means, our approach improves performance in the range of 4-26\% with exactly the same communication cost. Moreover, our method achieves performance competitive or superior to sharing second-order statistics with dramatically less communication overhead. Finally, using our method to initialize classifiers and then performing federated fine-tuning yields better and faster convergence. Code is available at https://github.com/dipamgoswami/FedCOF.
Related papers
- Cohort Squeeze: Beyond a Single Communication Round per Cohort in Cross-Device Federated Learning [51.560590617691005]
We investigate whether it is possible to squeeze more juice" out of each cohort than what is possible in a single communication round.
Our approach leads to up to 74% reduction in the total communication cost needed to train a FL model in the cross-device setting.
arXiv Detail & Related papers (2024-06-03T08:48:49Z) - A Hard-to-Beat Baseline for Training-free CLIP-based Adaptation [121.0693322732454]
Contrastive Language-Image Pretraining (CLIP) has gained popularity for its remarkable zero-shot capacity.
Recent research has focused on developing efficient fine-tuning methods to enhance CLIP's performance in downstream tasks.
We revisit a classical algorithm, Gaussian Discriminant Analysis (GDA), and apply it to the downstream classification of CLIP.
arXiv Detail & Related papers (2024-02-06T15:45:27Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - Improved Distribution Matching for Dataset Condensation [91.55972945798531]
We propose a novel dataset condensation method based on distribution matching.
Our simple yet effective method outperforms most previous optimization-oriented methods with much fewer computational resources.
arXiv Detail & Related papers (2023-07-19T04:07:33Z) - Finding the SWEET Spot: Analysis and Improvement of Adaptive Inference
in Low Resource Settings [6.463202903076821]
We compare the two main approaches for adaptive inference, Early-Exit and Multi-Model, when training data is limited.
Early-Exit provides a better speed-accuracy trade-off due to the overhead of the Multi-Model approach.
We propose SWEET, an Early-Exit fine-tuning method that assigns each classifier its own set of unique model weights.
arXiv Detail & Related papers (2023-06-04T09:16:39Z) - Prototype Helps Federated Learning: Towards Faster Convergence [38.517903009319994]
Federated learning (FL) is a distributed machine learning technique in which multiple clients cooperate to train a shared model without exchanging their raw data.
In this paper, a prototype-based federated learning framework is proposed, which can achieve better inference performance with only a few changes to the last global iteration of the typical federated learning process.
arXiv Detail & Related papers (2023-03-22T04:06:29Z) - Lightweight Conditional Model Extrapolation for Streaming Data under
Class-Prior Shift [27.806085423595334]
We introduce LIMES, a new method for learning with non-stationary streaming data.
We learn a single set of model parameters from which a specific classifier for any specific data distribution is derived.
Experiments on a set of exemplary tasks using Twitter data show that LIMES achieves higher accuracy than alternative approaches.
arXiv Detail & Related papers (2022-06-10T15:19:52Z) - Bi-level Alignment for Cross-Domain Crowd Counting [113.78303285148041]
Current methods rely on external data for training an auxiliary task or apply an expensive coarse-to-fine estimation.
We develop a new adversarial learning based method, which is simple and efficient to apply.
We evaluate our approach on five real-world crowd counting benchmarks, where we outperform existing approaches by a large margin.
arXiv Detail & Related papers (2022-05-12T02:23:25Z) - One-shot Federated Learning without Server-side Training [42.59845771101823]
One-shot federated learning is gaining popularity as a way to reduce communication cost between clients and the server.
Most of the existing one-shot FL methods are based on Knowledge Distillation; however, distillation based approach requires an extra training phase and depends on publicly available data sets or generated pseudo samples.
In this work, we consider a novel and challenging cross-silo setting: performing a single round of parameter aggregation on the local models without server-side training.
arXiv Detail & Related papers (2022-04-26T01:45:37Z) - On Second-order Optimization Methods for Federated Learning [59.787198516188425]
We evaluate the performance of several second-order distributed methods with local steps in the federated learning setting.
We propose a novel variant that uses second-order local information for updates and a global line search to counteract the resulting local specificity.
arXiv Detail & Related papers (2021-09-06T12:04:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.