論文の概要: Is Peer-Reviewing Worth the Effort?
- arxiv url: http://arxiv.org/abs/2412.14351v1
- Date: Wed, 18 Dec 2024 21:34:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-20 13:33:23.343218
- Title: Is Peer-Reviewing Worth the Effort?
- Title(参考訳): Peer-Reviewingは有用か?
- Authors: Kenneth Church, Raman Chandrasekar, John E. Ortega, Ibrahim Said Ahmad,
- Abstract要約: 重要な論文の識別にピアレビューはどの程度有効か?
会場と「早期返品」(出版直後の引用)に基づいて、今後どの論文を高く引用するかを予測できますか。
- 参考スコア(独自算出の注目度): 7.233466454439555
- License:
- Abstract: How effective is peer-reviewing in identifying important papers? We treat this question as a forecasting task. Can we predict which papers will be highly cited in the future based on venue and "early returns" (citations soon after publication)? We show early returns are more predictive than venue. Finally, we end with constructive suggestions to address scaling challenges: (a) too many submissions and (b) too few qualified reviewers.
- Abstract(参考訳): 重要な論文の識別にピアレビューはどの程度有効か?
私たちはこの問題を予測課題として扱います。
会場と「早期返品」(出版直後の引用)に基づいて、今後どの論文を高く引用するかを予測できますか。
早期のリターンは会場よりも予測力が高い。
最後に、スケーリングの課題に対処するための建設的な提案で終わります。
(a)提出が多すぎること
(b)適格な審査員が少なすぎること。
関連論文リスト
- Deep Transfer Learning Based Peer Review Aggregation and Meta-review Generation for Scientific Articles [2.0778556166772986]
論文の受理決定とメタレビュー生成という2つのピアレビューアグリゲーション課題に対処する。
まず,従来の機械学習アルゴリズムを適用し,受理決定のプロセスを自動化することを提案する。
メタレビュー生成では,T5モデルに基づく移動学習モデルを提案する。
論文 参考訳(メタデータ) (2024-10-05T15:40:37Z) - Estimating the Causal Effect of Early ArXiving on Paper Acceptance [56.538813945721685]
我々は,論文の審査期間(初期arXiving)前にarXivingが会議の受理に与える影響を推定する。
以上の結果から,早期のarXivingは,論文の受容に少なからぬ影響を及ぼす可能性が示唆された。
論文 参考訳(メタデータ) (2023-06-24T07:45:38Z) - On the Effect of Anticipation on Reading Times [84.27103313675342]
我々は単語の文脈エントロピーとして予測を運用する。
単語の読解時間に対する文脈的エントロピーの影響を示す重要な証拠が得られた。
論文 参考訳(メタデータ) (2022-11-25T18:58:23Z) - Spatio-Temporal Graph Representation Learning for Fraudster Group
Detection [50.779498955162644]
企業は、偽レビューを書くために詐欺師グループを雇い、競合相手をデモしたり、自分のビジネスを宣伝したりすることができる。
そのようなグループを検出するには、詐欺師グループの静的ネットワークを表現するのが一般的なモデルである。
両レビュアーの表現学習におけるHIN-RNNの有効性を第一に活用することを提案する。
論文 参考訳(メタデータ) (2022-01-07T08:01:38Z) - Inconsistency in Conference Peer Review: Revisiting the 2014 NeurIPS
Experiment [26.30237757653724]
コンファレンスピアレビューにおいて不整合性を検討した2014 NeurIPS 実験を再検討した。
強調された論文では,品質スコアと紙の影響には相関がないことがわかった。
論文 参考訳(メタデータ) (2021-09-20T18:06:22Z) - Ranking Scientific Papers Using Preference Learning [48.78161994501516]
我々はこれをピアレビューテキストとレビュアースコアに基づく論文ランキング問題とみなした。
ピアレビューに基づいて最終決定を行うための,新しい多面的総合評価フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-02T19:41:47Z) - Can We Automate Scientific Reviewing? [89.50052670307434]
我々は、最先端自然言語処理(NLP)モデルを用いて、科学論文の第一パスピアレビューを生成する可能性について論じる。
我々は、機械学習領域で論文のデータセットを収集し、各レビューでカバーされているさまざまなコンテンツに注釈を付け、レビューを生成するために論文を取り込み、ターゲットの要約モデルを訓練する。
総合的な実験結果から、システム生成レビューは、人間によるレビューよりも、論文の多くの側面に触れる傾向にあることが示された。
論文 参考訳(メタデータ) (2021-01-30T07:16:53Z) - Prior and Prejudice: The Novice Reviewers' Bias against Resubmissions in
Conference Peer Review [35.24369486197371]
現代の機械学習とコンピュータサイエンスのカンファレンスは、ピアレビューの品質に挑戦する応募の数が急増している。
いくつかのカンファレンスは、著者が論文の以前の提出履歴を宣言するよう促したり、要求したりし始めた。
本研究は、レビュー対象の提出が以前、類似の会場で拒否されたという知識から生じる偏見について検討する。
論文 参考訳(メタデータ) (2020-11-30T09:35:37Z) - What Can We Do to Improve Peer Review in NLP? [69.11622020605431]
問題の一部は、レビュアーとエリアチェアが、リンゴとオレンジの比較を強制する未定義のタスクに直面していることだ、と我々は主張する。
先進的な方法はいくつかあるが、NLPコミュニティにおける一貫した実装のためのインセンティブとメカニズムを作成することが重要な課題である。
論文 参考訳(メタデータ) (2020-10-08T09:32:21Z) - How Useful are Reviews for Recommendation? A Critical Review and
Potential Improvements [8.471274313213092]
本稿では,レビューテキストを用いてレコメンデーションシステムの改善を目指す,新たな作業体系について検討する。
実験条件やデータ前処理に変化はあるものの, 論文間で結果がコピーされていることから, 報告結果にいくつかの相違点がみられた。
さらなる調査では、リコメンデーションのためのユーザレビューの"重要"に関して、はるかに大きな問題に関する議論が求められている。
論文 参考訳(メタデータ) (2020-05-25T16:30:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。