論文の概要: How Useful are Reviews for Recommendation? A Critical Review and
Potential Improvements
- arxiv url: http://arxiv.org/abs/2005.12210v1
- Date: Mon, 25 May 2020 16:30:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-29 06:40:38.216898
- Title: How Useful are Reviews for Recommendation? A Critical Review and
Potential Improvements
- Title(参考訳): レビューはレコメンデーションにどの程度役立つか?
批判的レビューと潜在的な改善
- Authors: Noveen Sachdeva, Julian McAuley
- Abstract要約: 本稿では,レビューテキストを用いてレコメンデーションシステムの改善を目指す,新たな作業体系について検討する。
実験条件やデータ前処理に変化はあるものの, 論文間で結果がコピーされていることから, 報告結果にいくつかの相違点がみられた。
さらなる調査では、リコメンデーションのためのユーザレビューの"重要"に関して、はるかに大きな問題に関する議論が求められている。
- 参考スコア(独自算出の注目度): 8.471274313213092
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate a growing body of work that seeks to improve recommender
systems through the use of review text. Generally, these papers argue that
since reviews 'explain' users' opinions, they ought to be useful to infer the
underlying dimensions that predict ratings or purchases. Schemes to incorporate
reviews range from simple regularizers to neural network approaches. Our
initial findings reveal several discrepancies in reported results, partly due
to (e.g.) copying results across papers despite changes in experimental
settings or data pre-processing. First, we attempt a comprehensive analysis to
resolve these ambiguities. Further investigation calls for discussion on a much
larger problem about the "importance" of user reviews for recommendation.
Through a wide range of experiments, we observe several cases where
state-of-the-art methods fail to outperform existing baselines, especially as
we deviate from a few narrowly-defined settings where reviews are useful. We
conclude by providing hypotheses for our observations, that seek to
characterize under what conditions reviews are likely to be helpful. Through
this work, we aim to evaluate the direction in which the field is progressing
and encourage robust empirical evaluation.
- Abstract(参考訳): 本稿では,レビューテキストを用いてレコメンダシステムを改善するための作業の増大について検討する。
概してこれらの論文は、レビューはユーザーの意見を「説明」するため、評価や購入を予測する基礎となる次元を推測するのに有用であると主張する。
レビューを組み込むスキームは、単純な正規化からニューラルネットワークアプローチまで幅広い。
実験条件やデータ前処理の変更にもかかわらず、論文間で結果がコピーされた(例)ことなどから、報告結果にいくつかの相違点が判明した。
まず、これらの曖昧さを解決するために包括的分析を試みる。
さらなる調査により、レコメンデーションに対するユーザーレビューの「インポージェンス」に関するより大きな問題に関する議論が求められる。
幅広い実験を通して、現状の手法が既存のベースラインを上回りませんが、特にレビューが有用であるいくつかの限定された設定から逸脱しているケースを観察する。
我々は、レビューが役に立つであろう条件の下で特徴付けしようとする観察のための仮説を提供することで、結論付ける。
本研究は,フィールドの進行方向を評価し,ロバストな経験的評価を促進することを目的とする。
関連論文リスト
- A Literature Review of Literature Reviews in Pattern Analysis and Machine Intelligence [58.6354685593418]
本稿では, レビューを評価するために, 記事レベル, フィールド正規化, 大規模言語モデルを用いた書誌指標を提案する。
新たに登場したAI生成の文献レビューも評価されている。
この研究は、文学レビューの現在の課題についての洞察を与え、彼らの開発に向けた今後の方向性を思い起こさせる。
論文 参考訳(メタデータ) (2024-02-20T11:28:50Z) - On the Role of Reviewer Expertise in Temporal Review Helpfulness
Prediction [5.381004207943597]
有用なレビューを識別する既存の方法は、主にレビューテキストに焦点をあて、レビューを投稿する(1)とレビューを投稿する(2)の2つの重要な要素を無視する。
本稿では,過去のレビュー履歴から得られたレビュアの専門知識と,レビューの時間的ダイナミクスを統合し,レビューの有用性を自動的に評価するモデルを提案する。
論文 参考訳(メタデータ) (2023-02-22T23:41:22Z) - No Agreement Without Loss: Learning and Social Choice in Peer Review [0.0]
それぞれのレビュアーが、機能セットからレコメンデーションへの独自のマッピングを持っていると仮定してもよいでしょう。
これは、共振バイアス(commensuration bias)として知られる任意の要素を導入する。
Noothigattu, Shah and Procaccia は、ある種の損失関数を最小化することによってレビュアーのマッピングを集約することを提案した。
論文 参考訳(メタデータ) (2022-11-03T21:03:23Z) - On Faithfulness and Coherence of Language Explanations for
Recommendation Systems [8.143715142450876]
この研究は、最先端モデルとそのレビュー生成コンポーネントを探索する。
得られた説明は不安定であり, 推定評価の合理的な根拠として考える前に, さらなる評価が必要であることを示す。
論文 参考訳(メタデータ) (2022-09-12T17:00:31Z) - Measuring "Why" in Recommender Systems: a Comprehensive Survey on the
Evaluation of Explainable Recommendation [87.82664566721917]
この調査は、IJCAI、AAAI、TheWebConf、Recsys、UMAP、IUIといったトップレベルのカンファレンスから100以上の論文に基づいています。
論文 参考訳(メタデータ) (2022-02-14T02:58:55Z) - Learning Opinion Summarizers by Selecting Informative Reviews [81.47506952645564]
31,000以上の製品のユーザレビューと組み合わせた大規模な要約データセットを収集し、教師付きトレーニングを可能にします。
多くのレビューの内容は、人間が書いた要約には反映されず、したがってランダムなレビューサブセットで訓練された要約者は幻覚する。
我々は、これらのサブセットで表現された意見を要約し、レビューの情報的サブセットを選択するための共同学習としてタスクを定式化する。
論文 参考訳(メタデータ) (2021-09-09T15:01:43Z) - Ranking Scientific Papers Using Preference Learning [48.78161994501516]
我々はこれをピアレビューテキストとレビュアースコアに基づく論文ランキング問題とみなした。
ピアレビューに基づいて最終決定を行うための,新しい多面的総合評価フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-02T19:41:47Z) - SIFN: A Sentiment-aware Interactive Fusion Network for Review-based Item
Recommendation [48.1799451277808]
本稿では、レビューに基づく項目推薦のための感性認識型インタラクティブフュージョンネットワーク(SIFN)を提案する。
まず、BERTを介してユーザ/イテムレビューをエンコードし、各レビューのセマンティックな特徴を抽出する軽量な感情学習者を提案する。
そこで我々は,感情学習者が明示的な感情ラベルを用いて感情認識特徴を抽出するための感情予測タスクを提案する。
論文 参考訳(メタデータ) (2021-08-18T08:04:38Z) - Can We Automate Scientific Reviewing? [89.50052670307434]
我々は、最先端自然言語処理(NLP)モデルを用いて、科学論文の第一パスピアレビューを生成する可能性について論じる。
我々は、機械学習領域で論文のデータセットを収集し、各レビューでカバーされているさまざまなコンテンツに注釈を付け、レビューを生成するために論文を取り込み、ターゲットの要約モデルを訓練する。
総合的な実験結果から、システム生成レビューは、人間によるレビューよりも、論文の多くの側面に触れる傾向にあることが示された。
論文 参考訳(メタデータ) (2021-01-30T07:16:53Z) - Aspect-based Sentiment Analysis of Scientific Reviews [12.472629584751509]
本研究は,受理論文と受理論文ではアスペクトベース感情の分布が著しく異なることを示す。
第2の目的として、論文を閲覧するレビュアーの間での意見の不一致の程度を定量化する。
また, 審査員と議長との意見の不一致の程度について検討し, 審査員間の意見の不一致が議長との意見の不一致と関係があることを見出した。
論文 参考訳(メタデータ) (2020-06-05T07:06:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。