FedPIA -- Permuting and Integrating Adapters leveraging Wasserstein Barycenters for Finetuning Foundation Models in Multi-Modal Federated Learning
- URL: http://arxiv.org/abs/2412.14424v1
- Date: Thu, 19 Dec 2024 00:24:00 GMT
- Title: FedPIA -- Permuting and Integrating Adapters leveraging Wasserstein Barycenters for Finetuning Foundation Models in Multi-Modal Federated Learning
- Authors: Pramit Saha, Divyanshu Mishra, Felix Wagner, Konstantinos Kamnitsas, J. Alison Noble,
- Abstract summary: We propose a novel framework called FedPIA that improves upon the naive combinations of FL and PEFT.
We conduct over 2000 client-level experiments utilizing 48 medical image datasets across five different medical vision-language FL task settings.
Our experiments demonstrate that FedPIA consistently outperforms the state-of-the-art PEFT-FL baselines.
- Score: 7.005516664708197
- License:
- Abstract: Large Vision-Language Models typically require large text and image datasets for effective fine-tuning. However, collecting data from various sites, especially in healthcare, is challenging due to strict privacy regulations. An alternative is to fine-tune these models on end-user devices, such as in medical clinics, without sending data to a server. These local clients typically have limited computing power and small datasets, which are not enough for fully fine-tuning large VLMs on their own. A naive solution to these scenarios is to leverage parameter-efficient fine-tuning (PEFT) strategies and apply federated learning (FL) algorithms to combine the learned adapter weights, thereby respecting the resource limitations and data privacy. However, this approach does not fully leverage the knowledge from multiple adapters trained on diverse data distributions and for diverse tasks. The adapters are adversely impacted by data heterogeneity and task heterogeneity across clients resulting in suboptimal convergence. To this end, we propose a novel framework called FedPIA that improves upon the naive combinations of FL and PEFT by introducing Permutation and Integration of the local Adapters in the server and global Adapters in the clients exploiting Wasserstein barycenters for improved blending of client-specific and client-agnostic knowledge. This layerwise permutation helps to bridge the gap in the parameter space of local and global adapters before integration. We conduct over 2000 client-level experiments utilizing 48 medical image datasets across five different medical vision-language FL task settings encompassing visual question answering as well as image and report-based multi-label disease detection. Our experiments involving diverse client settings, ten different modalities, and two VLM backbones demonstrate that FedPIA consistently outperforms the state-of-the-art PEFT-FL baselines.
Related papers
- Client-Centric Federated Adaptive Optimization [78.30827455292827]
Federated Learning (FL) is a distributed learning paradigm where clients collaboratively train a model while keeping their own data private.
We propose Federated-Centric Adaptive Optimization, which is a class of novel federated optimization approaches.
arXiv Detail & Related papers (2025-01-17T04:00:50Z) - Modality Alignment Meets Federated Broadcasting [9.752555511824593]
Federated learning (FL) has emerged as a powerful approach to safeguard data privacy by training models across distributed edge devices without centralizing local data.
This paper introduces a novel FL framework leveraging modality alignment, where a text encoder resides on the server, and image encoders operate on local devices.
arXiv Detail & Related papers (2024-11-24T13:30:03Z) - Collaborative and Efficient Personalization with Mixtures of Adaptors [5.195669033269619]
We propose a parameter-efficient framework to tackle multi-task learning problems.
We call our framework Federated Low-Rank Adaptive Learning (FLoRAL)
We show promising experimental results on synthetic datasets and real-world federated multi-task problems.
arXiv Detail & Related papers (2024-10-04T15:11:15Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - FLASH: Federated Learning Across Simultaneous Heterogeneities [54.80435317208111]
FLASH(Federated Learning Across Simultaneous Heterogeneities) is a lightweight and flexible client selection algorithm.
It outperforms state-of-the-art FL frameworks under extensive sources of Heterogeneities.
It achieves substantial and consistent improvements over state-of-the-art baselines.
arXiv Detail & Related papers (2024-02-13T20:04:39Z) - Profit: Benchmarking Personalization and Robustness Trade-off in
Federated Prompt Tuning [40.16581292336117]
In many applications of federated learning (FL), clients desire models that are personalized using their local data, yet are also robust in the sense that they retain general global knowledge.
It is critical to understand how to navigate this personalization vs robustness trade-off when designing federated systems.
arXiv Detail & Related papers (2023-10-06T23:46:33Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated learning (FL) is a distributed learning paradigm that enables multiple clients to learn a powerful global model by aggregating local training.
In this paper, we present a novel FL algorithm, i.e., FedIns, to handle intra-client data heterogeneity by enabling instance-adaptive inference in the FL framework.
Our experiments show that our FedIns outperforms state-of-the-art FL algorithms, e.g., a 6.64% improvement against the top-performing method with less than 15% communication cost on Tiny-ImageNet.
arXiv Detail & Related papers (2023-08-11T09:58:47Z) - PerAda: Parameter-Efficient Federated Learning Personalization with Generalization Guarantees [95.87604231887353]
Existing pFL methods introduce high communication and computation costs or are vulnerable to test communication.
In PerAda, a parameter distillation and pFL pFL has superior performance, especially under test-time distribution.
Our code is available at https://github.com/NV/PerAda.
arXiv Detail & Related papers (2023-02-13T19:00:37Z) - ON-DEMAND-FL: A Dynamic and Efficient Multi-Criteria Federated Learning
Client Deployment Scheme [37.099990745974196]
We introduce an On-Demand-FL, a client deployment approach for federated learning.
We make use of containerization technology such as Docker to build efficient environments.
The Genetic algorithm (GA) is used to solve the multi-objective optimization problem.
arXiv Detail & Related papers (2022-11-05T13:41:19Z) - Federated Multi-Target Domain Adaptation [99.93375364579484]
Federated learning methods enable us to train machine learning models on distributed user data while preserving its privacy.
We consider a more practical scenario where the distributed client data is unlabeled, and a centralized labeled dataset is available on the server.
We propose an effective DualAdapt method to address the new challenges.
arXiv Detail & Related papers (2021-08-17T17:53:05Z) - Federated Whole Prostate Segmentation in MRI with Personalized Neural
Architectures [11.563695244722613]
Federated learning (FL) is a way to train machine learning models without the need for centralized datasets.
In this work, we combine FL with an AutoML technique based on local neural architecture search by training a "supernet"
The proposed method is evaluated on four different datasets from 3D prostate MRI and shown to improve the local models' performance after adaptation.
arXiv Detail & Related papers (2021-07-16T20:35:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.