論文の概要: IntroStyle: Training-Free Introspective Style Attribution using Diffusion Features
- arxiv url: http://arxiv.org/abs/2412.14432v2
- Date: Tue, 05 Aug 2025 06:41:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-06 15:23:33.751076
- Title: IntroStyle: Training-Free Introspective Style Attribution using Diffusion Features
- Title(参考訳): IntroStyle: 拡散特徴を用いたトレーニング不要なイントロスペクティブスタイルの属性
- Authors: Anand Kumar, Jiteng Mu, Nuno Vasconcelos,
- Abstract要約: スタイル帰属問題を解決するための学習自由フレームワークを提案する。
IntroStyleはスタイル属性の最先端モデルよりも優れたパフォーマンスを示している。
- 参考スコア(独自算出の注目度): 89.95303251220734
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Text-to-image (T2I) models have recently gained widespread adoption. This has spurred concerns about safeguarding intellectual property rights and an increasing demand for mechanisms that prevent the generation of specific artistic styles. Existing methods for style extraction typically necessitate the collection of custom datasets and the training of specialized models. This, however, is resource-intensive, time-consuming, and often impractical for real-time applications. We present a novel, training-free framework to solve the style attribution problem, using the features produced by a diffusion model alone, without any external modules or retraining. This is denoted as Introspective Style attribution (IntroStyle) and is shown to have superior performance to state-of-the-art models for style attribution. We also introduce a synthetic dataset of Artistic Style Split (ArtSplit) to isolate artistic style and evaluate fine-grained style attribution performance. Our experimental results on WikiArt and DomainNet datasets show that \ours is robust to the dynamic nature of artistic styles, outperforming existing methods by a wide margin.
- Abstract(参考訳): テキスト・ツー・イメージ(T2I)モデルは近年広く採用されている。
これにより知的財産権の保護への懸念が高まり、特定の芸術様式の発生を防ぐメカニズムへの需要が高まった。
スタイル抽出の既存の方法は、通常、カスタムデータセットの収集と特別なモデルのトレーニングを必要とする。
しかし、これはリソース集約的で、時間がかかり、しばしばリアルタイムアプリケーションには実用的ではない。
本稿では,外部モジュールや再学習を必要とせず,拡散モデルのみによって生成された特徴を用いて,スタイル帰属問題を解決する新しい学習自由フレームワークを提案する。
これはIntrospective Style Attribution(IntroStyle)と表記され、スタイル属性の最先端モデルよりも優れたパフォーマンスを示す。
また,Art Split(ArtSplit)の合成データセットを導入し,芸術的スタイルを分離し,微粒なスタイル属性性能を評価する。
WikiArtとDomainNetのデータセットによる実験結果から,‘ours’は芸術スタイルのダイナミックな性質に頑健であり,既存の手法よりも広いマージンで優れていることが示された。
関連論文リスト
- Training-free Stylized Text-to-Image Generation with Fast Inference [24.55785152141884]
本稿では,事前学習した大規模拡散モデルを利用した新しいスタイリング画像生成手法を提案する。
我々は、潜在整合モデルの自己整合性を利用して、代表的なスタイル統計を抽出する。
次に、モデルが最も関連するスタイルパターンを問合せできる自己意図の標準的な混合を紹介します。
論文 参考訳(メタデータ) (2025-05-25T09:38:23Z) - Compose Your Aesthetics: Empowering Text-to-Image Models with the Principles of Art [61.28133495240179]
本稿では,ユーザが特定した美学をT2I生成出力と整合させることを目的とした,美学アライメントの新しい課題を提案する。
アートワークが美学にアプローチするための貴重な視点を提供する方法にインスパイアされた私たちは、構成的枠組みのアーティストが採用する視覚的美学を定式化した。
我々は,T2I DMが,ユーザが特定したPoA条件により10の合成制御を効果的に提供することを実証した。
論文 参考訳(メタデータ) (2025-03-15T06:58:09Z) - Learning Artistic Signatures: Symmetry Discovery and Style Transfer [8.288443063900825]
芸術様式の明確な定義はない。
スタイルは、局所的なテクスチャの配置を規定するグローバルな対称性のセットと考えるべきである。
局所的特徴とグローバル的特徴の両方を考慮し、リージェネレータと従来のテクスチャ尺度の両方を用いて、どちらの特徴セットよりもアーティスト間のスタイル的類似性を定量的に捉えることができることを示す。
論文 参考訳(メタデータ) (2024-12-05T18:56:23Z) - Opt-In Art: Learning Art Styles Only from Few Examples [50.60063523054282]
ごく少数の例を考慮すれば,絵画を使わずに訓練されたモデルを芸術的なスタイルに適応させることが可能であることを示す。
意外なことに, 芸術的データに事前に触れることなく, 高品質な芸術的アウトプットを達成できることが示唆された。
論文 参考訳(メタデータ) (2024-11-29T18:59:01Z) - MuseumMaker: Continual Style Customization without Catastrophic Forgetting [50.12727620780213]
本研究では,一組のカスタマイズスタイルを終末的に追従することで,画像の合成を可能にする方法であるMuseumMakerを提案する。
新しいカスタマイズスタイルに直面すると、新しい画像生成のためのトレーニングデータのスタイルを抽出し学習するスタイル蒸留損失モジュールを開発する。
これは、新しい訓練画像の内容による学習バイアスを最小限に抑え、少数ショット画像によって引き起こされる破滅的な過適合問題に対処することができる。
論文 参考訳(メタデータ) (2024-04-25T13:51:38Z) - FedStyle: Style-Based Federated Learning Crowdsourcing Framework for Art Commissions [3.1676484382068315]
FedStyleはスタイルベースのフェデレーション学習クラウドソーシングフレームワークである。
アーティストは、コラボレーションのためのアートワークではなく、ローカルスタイルのモデルをトレーニングし、モデルパラメータを共有することができる。
アーティストに抽象的なスタイルの表現を学習させ、サーバと整合させることで、極端なデータ不均一性に対処する。
論文 参考訳(メタデータ) (2024-04-25T04:53:43Z) - Rethinking Artistic Copyright Infringements in the Era of Text-to-Image Generative Models [47.19481598385283]
ArtSavantは、ウィキアートの作品の参照データセットと比較することで、アーティストのユニークなスタイルを決定するツールである。
そこで我々は,3つの人気テキスト・画像生成モデルにまたがる芸術的スタイルの複製の頻度を定量的に把握するために,大規模な実証的研究を行った。
論文 参考訳(メタデータ) (2024-04-11T17:59:43Z) - Measuring Style Similarity in Diffusion Models [118.22433042873136]
画像からスタイル記述子を理解し抽出するためのフレームワークを提案する。
我々のフレームワークは、スタイルが画像の主観的特性であるという洞察を用いてキュレートされた新しいデータセットで構成されている。
また、テキスト・ツー・イメージ・モデルのトレーニングデータセットで使用される画像に対して、生成した画像のスタイルに使用できるスタイル属性記述子を抽出する手法を提案する。
論文 参考訳(メタデータ) (2024-04-01T17:58:30Z) - HiCAST: Highly Customized Arbitrary Style Transfer with Adapter Enhanced
Diffusion Models [84.12784265734238]
Arbitrary Style Transfer (AST)の目標は、あるスタイル参照の芸術的特徴を所定の画像/ビデオに注入することである。
各種のセマンティックな手がかりに基づいてスタイリング結果を明示的にカスタマイズできるHiCASTを提案する。
新たな学習目標をビデオ拡散モデルトレーニングに活用し,フレーム間の時間的一貫性を大幅に向上させる。
論文 参考訳(メタデータ) (2024-01-11T12:26:23Z) - ArtBank: Artistic Style Transfer with Pre-trained Diffusion Model and
Implicit Style Prompt Bank [9.99530386586636]
アートスタイルの転送は、学習したアートスタイルでコンテンツイメージを再描画することを目的としている。
既存のスタイル転送手法は、小さなモデルベースアプローチと、事前訓練された大規模モデルベースアプローチの2つのカテゴリに分けられる。
本研究では,高度にリアルなスタイライズされた画像を生成するために,アートバンクという新しいスタイル転送フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-11T05:53:40Z) - ArtFusion: Controllable Arbitrary Style Transfer using Dual Conditional
Latent Diffusion Models [0.0]
Arbitrary Style Transfer (AST)は、任意のアートワークからスタイルを採用することで、イメージを変換することを目的としている。
我々は、コンテンツとスタイルの柔軟なバランスを提供する新しいアプローチ、ArtFusionを提案する。
論文 参考訳(メタデータ) (2023-06-15T17:58:36Z) - Few-shots Portrait Generation with Style Enhancement and Identity
Preservation [3.6937810031393123]
StyleIdentityGANモデルは、生成された肖像画のアイデンティティと芸術性を同時に確保することができる。
スタイル強化モジュールは、生成した仮想顔画像の芸術性を改善するために、デカップリングと転送の芸術的スタイルの特徴に焦点を当てている。
アートやアイデンティティ効果の最先端手法よりもStyleIdentityGANの方が優れていることを示す実験を行った。
論文 参考訳(メタデータ) (2023-03-01T10:02:12Z) - Adversarial Style Augmentation for Domain Generalized Urban-Scene
Segmentation [120.96012935286913]
そこで本研究では,学習中にハードなスタイリング画像を生成可能な,新たな対向型拡張手法を提案する。
2つの合成から実のセマンティックセグメンテーションベンチマークの実験により、AdvStyleは目に見えない実領域におけるモデル性能を大幅に改善できることを示した。
論文 参考訳(メタデータ) (2022-07-11T14:01:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。