論文の概要: Opt-In Art: Learning Art Styles Only from Few Examples
- arxiv url: http://arxiv.org/abs/2412.00176v3
- Date: Tue, 20 May 2025 19:07:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-22 15:42:57.200106
- Title: Opt-In Art: Learning Art Styles Only from Few Examples
- Title(参考訳): Opt-In Art: ごく少数の例から学ぶアートスタイル
- Authors: Hui Ren, Joanna Materzynska, Rohit Gandikota, David Bau, Antonio Torralba,
- Abstract要約: ごく少数の例を考慮すれば,絵画を使わずに訓練されたモデルを芸術的なスタイルに適応させることが可能であることを示す。
意外なことに, 芸術的データに事前に触れることなく, 高品質な芸術的アウトプットを達成できることが示唆された。
- 参考スコア(独自算出の注目度): 50.60063523054282
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We explore whether pre-training on datasets with paintings is necessary for a model to learn an artistic style with only a few examples. To investigate this, we train a text-to-image model exclusively on photographs, without access to any painting-related content. We show that it is possible to adapt a model that is trained without paintings to an artistic style, given only few examples. User studies and automatic evaluations confirm that our model (post-adaptation) performs on par with state-of-the-art models trained on massive datasets that contain artistic content like paintings, drawings or illustrations. Finally, using data attribution techniques, we analyze how both artistic and non-artistic datasets contribute to generating artistic-style images. Surprisingly, our findings suggest that high-quality artistic outputs can be achieved without prior exposure to artistic data, indicating that artistic style generation can occur in a controlled, opt-in manner using only a limited, carefully selected set of training examples.
- Abstract(参考訳): モデルが芸術的スタイルを学習するためには,絵画を用いたデータセットの事前学習が必要かどうかを,ごく少数の例で検討する。
そこで本研究では,絵画関連コンテンツにアクセスすることなく,写真のみを対象としたテキスト・ツー・イメージ・モデルを訓練する。
ごく少数の例を考慮すれば,絵画を使わずに訓練されたモデルを芸術的なスタイルに適応させることが可能であることを示す。
ユーザスタディと自動評価により、私たちのモデル(適応後)が、絵画、絵、イラストのような芸術的内容を含む巨大なデータセットでトレーニングされた最先端のモデルと同等に動作していることが確認されます。
最後に、データ属性技術を用いて、芸術的データセットと非芸術的データセットの両方が、芸術的なスタイルの画像の生成にどのように貢献するかを分析する。
意外なことに,我々の研究結果は,芸術的データに先行的に触れることなく,高品質な芸術的アウトプットが達成可能であることを示唆し,限定的かつ慎重に選択されたトレーニング例のみを用いて,芸術的スタイル生成が制御されたオプトイン方式で実現可能であることを示唆している。
関連論文リスト
- ArtistAuditor: Auditing Artist Style Pirate in Text-to-Image Generation Models [61.55816738318699]
本稿では,テキスト・画像生成モデルにおける新しいデータ利用監査手法を提案する。
ArtistAuditorは、多彩なスタイルの表現を得るためにスタイル抽出器を使用し、アートワークをアーティストのスタイルのサンプリングとして扱う。
6つのモデルとデータセットの組み合わせによる実験結果は、ArtistAuditorが高いAUC値を達成可能であることを示している。
論文 参考訳(メタデータ) (2025-04-17T16:15:38Z) - Rethinking Artistic Copyright Infringements in the Era of Text-to-Image Generative Models [47.19481598385283]
ArtSavantは、ウィキアートの作品の参照データセットと比較することで、アーティストのユニークなスタイルを決定するツールである。
そこで我々は,3つの人気テキスト・画像生成モデルにまたがる芸術的スタイルの複製の頻度を定量的に把握するために,大規模な実証的研究を行った。
論文 参考訳(メタデータ) (2024-04-11T17:59:43Z) - AI Art Neural Constellation: Revealing the Collective and Contrastive
State of AI-Generated and Human Art [36.21731898719347]
我々は、人間の芸術遺産の文脈内でAI生成芸術を位置づけるための包括的な分析を行う。
私たちの比較分析は、ArtConstellationと呼ばれる広範なデータセットに基づいています。
鍵となる発見は、1800-2000年に作られた現代美術の原理とAIが生成したアートアートが視覚的に関連していることである。
論文 参考訳(メタデータ) (2024-02-04T11:49:51Z) - Inventing art styles with no artistic training data [0.65268245109828]
本研究では,自然画像のみに基づいて学習したモデルを用いて,絵画スタイルを作成する2つの手法を提案する。
第1の手順では、創造的な表現を達成するために、芸術媒体からの帰納バイアスを用いる。
第2の手順では、新たなスタイルを作るためのインスピレーションとして、追加の自然なイメージを使用する。
論文 参考訳(メタデータ) (2023-05-19T21:59:23Z) - Learning to Evaluate the Artness of AI-generated Images [64.48229009396186]
アートスコア(ArtScore)は、アーティストによる本物のアートワークと画像がどの程度似ているかを評価するために設計されたメトリクスである。
我々は、写真とアートワークの生成のために事前訓練されたモデルを採用し、一連の混合モデルを生み出した。
このデータセットはニューラルネットワークのトレーニングに使用され、任意の画像の定量化精度レベルを推定する方法を学ぶ。
論文 参考訳(メタデータ) (2023-05-08T17:58:27Z) - Towards mapping the contemporary art world with ArtLM: an art-specific
NLP model [0.0]
本報告では, 現代美術家間の相互関係を明らかにするために, 総合自然言語処理フレームワーク(ArtLM)を提案する。
広範囲な実験により, 85.6%の精度と84.0%のF1スコアが得られた。
また,ArtLMの出力から構築したアーティストネットワークの可視化と定性解析も提供する。
論文 参考訳(メタデータ) (2022-12-14T09:26:07Z) - Inversion-Based Style Transfer with Diffusion Models [78.93863016223858]
以前の任意の例として誘導された芸術的画像生成法は、しばしば形状変化の制御や要素の伝達に失敗する。
画像のキー情報を効率よく正確に学習できるインバージョンベースのスタイル転送手法(InST)を提案する。
論文 参考訳(メタデータ) (2022-11-23T18:44:25Z) - Docent: A content-based recommendation system to discover contemporary
art [0.8782885374383763]
本稿では,アート作品の画像とアーティストのコンテキストメタデータに依存する,現代美術のコンテントベースレコメンデーションシステムを提案する。
私たちは、高度な、そしてアート特有の情報を収集し、注釈付けしたアートワークを収集し、モデルをトレーニングするために使用したユニークなデータベースを作成しました。
アートスペシャリストのチームによる評価の結果、意味のあるアート作品の75%の平均的な最終評価が得られました。
論文 参考訳(メタデータ) (2022-07-12T16:26:27Z) - Modeling Artistic Workflows for Image Generation and Editing [83.43047077223947]
与えられた芸術的ワークフローに従う生成モデルを提案する。
既存の芸術作品の多段画像編集だけでなく、多段画像生成も可能である。
論文 参考訳(メタデータ) (2020-07-14T17:54:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。