Cherry-Picking in Time Series Forecasting: How to Select Datasets to Make Your Model Shine
- URL: http://arxiv.org/abs/2412.14435v1
- Date: Thu, 19 Dec 2024 01:34:17 GMT
- Title: Cherry-Picking in Time Series Forecasting: How to Select Datasets to Make Your Model Shine
- Authors: Luis Roque, Carlos Soares, Vitor Cerqueira, Luis Torgo,
- Abstract summary: We investigate the impact of dataset selection bias, particularly the practice of cherry-picking datasets, on the performance evaluation of forecasting methods.
By selectively choosing just four datasets, 46% of methods could be deemed best in class, and 77% could rank within the top three.
Our results indicate that, when empirically validating forecasting algorithms on a subset of the benchmarks, increasing the number of datasets tested from 3 to 6 reduces the risk of incorrectly identifying an algorithm as the best one by approximately 40%.
- Score: 0.35998666903987897
- License:
- Abstract: The importance of time series forecasting drives continuous research and the development of new approaches to tackle this problem. Typically, these methods are introduced through empirical studies that frequently claim superior accuracy for the proposed approaches. Nevertheless, concerns are rising about the reliability and generalizability of these results due to limitations in experimental setups. This paper addresses a critical limitation: the number and representativeness of the datasets used. We investigate the impact of dataset selection bias, particularly the practice of cherry-picking datasets, on the performance evaluation of forecasting methods. Through empirical analysis with a diverse set of benchmark datasets, our findings reveal that cherry-picking datasets can significantly distort the perceived performance of methods, often exaggerating their effectiveness. Furthermore, our results demonstrate that by selectively choosing just four datasets - what most studies report - 46% of methods could be deemed best in class, and 77% could rank within the top three. Additionally, recent deep learning-based approaches show high sensitivity to dataset selection, whereas classical methods exhibit greater robustness. Finally, our results indicate that, when empirically validating forecasting algorithms on a subset of the benchmarks, increasing the number of datasets tested from 3 to 6 reduces the risk of incorrectly identifying an algorithm as the best one by approximately 40%. Our study highlights the critical need for comprehensive evaluation frameworks that more accurately reflect real-world scenarios. Adopting such frameworks will ensure the development of robust and reliable forecasting methods.
Related papers
- A CLIP-Powered Framework for Robust and Generalizable Data Selection [51.46695086779598]
Real-world datasets often contain redundant and noisy data, imposing a negative impact on training efficiency and model performance.
Data selection has shown promise in identifying the most representative samples from the entire dataset.
We propose a novel CLIP-powered data selection framework that leverages multimodal information for more robust and generalizable sample selection.
arXiv Detail & Related papers (2024-10-15T03:00:58Z) - Ranking and Combining Latent Structured Predictive Scores without Labeled Data [2.5064967708371553]
This paper introduces a novel structured unsupervised ensemble learning model (SUEL)
It exploits the dependency between a set of predictors with continuous predictive scores, rank the predictors without labeled data and combine them to an ensembled score with weights.
The efficacy of the proposed methods is rigorously assessed through both simulation studies and real-world application of risk genes discovery.
arXiv Detail & Related papers (2024-08-14T20:14:42Z) - Uncertainty for Active Learning on Graphs [70.44714133412592]
Uncertainty Sampling is an Active Learning strategy that aims to improve the data efficiency of machine learning models.
We benchmark Uncertainty Sampling beyond predictive uncertainty and highlight a significant performance gap to other Active Learning strategies.
We develop ground-truth Bayesian uncertainty estimates in terms of the data generating process and prove their effectiveness in guiding Uncertainty Sampling toward optimal queries.
arXiv Detail & Related papers (2024-05-02T16:50:47Z) - DRoP: Distributionally Robust Data Pruning [11.930434318557156]
We conduct the first systematic study of the impact of data pruning on classification bias of trained models.
We propose DRoP, a distributionally robust approach to pruning and empirically demonstrate its performance on standard computer vision benchmarks.
arXiv Detail & Related papers (2024-04-08T14:55:35Z) - Systematic Evaluation of Predictive Fairness [60.0947291284978]
Mitigating bias in training on biased datasets is an important open problem.
We examine the performance of various debiasing methods across multiple tasks.
We find that data conditions have a strong influence on relative model performance.
arXiv Detail & Related papers (2022-10-17T05:40:13Z) - Selecting the suitable resampling strategy for imbalanced data
classification regarding dataset properties [62.997667081978825]
In many application domains such as medicine, information retrieval, cybersecurity, social media, etc., datasets used for inducing classification models often have an unequal distribution of the instances of each class.
This situation, known as imbalanced data classification, causes low predictive performance for the minority class examples.
Oversampling and undersampling techniques are well-known strategies to deal with this problem by balancing the number of examples of each class.
arXiv Detail & Related papers (2021-12-15T18:56:39Z) - Selecting Datasets for Evaluating an Enhanced Deep Learning Framework [0.2999888908665658]
This work deals with the steps followed to select suitable datasets characterised by discrete irregular sequential patterns.
The developed framework was then tested using the most appropriate datasets.
The research concluded that the financial market-daily currency exchange domain is the most suitable kind of data set for the evaluation of the designed deep learning framework.
arXiv Detail & Related papers (2021-09-21T22:09:30Z) - Doing Great at Estimating CATE? On the Neglected Assumptions in
Benchmark Comparisons of Treatment Effect Estimators [91.3755431537592]
We show that even in arguably the simplest setting, estimation under ignorability assumptions can be misleading.
We consider two popular machine learning benchmark datasets for evaluation of heterogeneous treatment effect estimators.
We highlight that the inherent characteristics of the benchmark datasets favor some algorithms over others.
arXiv Detail & Related papers (2021-07-28T13:21:27Z) - Online Coreset Selection for Rehearsal-based Continual Learning [65.85595842458882]
In continual learning, we store a subset of training examples (coreset) to be replayed later to alleviate catastrophic forgetting.
We propose Online Coreset Selection (OCS), a simple yet effective method that selects the most representative and informative coreset at each iteration.
Our proposed method maximizes the model's adaptation to a target dataset while selecting high-affinity samples to past tasks, which directly inhibits catastrophic forgetting.
arXiv Detail & Related papers (2021-06-02T11:39:25Z) - Robust Fairness-aware Learning Under Sample Selection Bias [17.09665420515772]
We propose a framework for robust and fair learning under sample selection bias.
We develop two algorithms to handle sample selection bias when test data is both available and unavailable.
arXiv Detail & Related papers (2021-05-24T23:23:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.