論文の概要: CLDG: Contrastive Learning on Dynamic Graphs
- arxiv url: http://arxiv.org/abs/2412.14451v1
- Date: Thu, 19 Dec 2024 01:59:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-20 13:33:02.457339
- Title: CLDG: Contrastive Learning on Dynamic Graphs
- Title(参考訳): CLDG:動的グラフのコントラスト学習
- Authors: Yiming Xu, Bin Shi, Teng Ma, Bo Dong, Haoyi Zhou, Qinghua Zheng,
- Abstract要約: グラフコントラスト学習は、統計グラフの拡張ビュー間の相互情報を最大化することにより、自己教師付き信号を構成する。
セマンティクスとラベルは拡張プロセス内で変更され、下流タスクのパフォーマンスが大幅に低下する可能性がある。
この問題に対処するため,我々はCLDGというシンプルなフレームワークを設計した。
- 参考スコア(独自算出の注目度): 37.512771826351454
- License:
- Abstract: The graph with complex annotations is the most potent data type, whose constantly evolving motivates further exploration of the unsupervised dynamic graph representation. One of the representative paradigms is graph contrastive learning. It constructs self-supervised signals by maximizing the mutual information between the statistic graph's augmentation views. However, the semantics and labels may change within the augmentation process, causing a significant performance drop in downstream tasks. This drawback becomes greatly magnified on dynamic graphs. To address this problem, we designed a simple yet effective framework named CLDG. Firstly, we elaborate that dynamic graphs have temporal translation invariance at different levels. Then, we proposed a sampling layer to extract the temporally-persistent signals. It will encourage the node to maintain consistent local and global representations, i.e., temporal translation invariance under the timespan views. The extensive experiments demonstrate the effectiveness and efficiency of the method on seven datasets by outperforming eight unsupervised state-of-the-art baselines and showing competitiveness against four semi-supervised methods. Compared with the existing dynamic graph method, the number of model parameters and training time is reduced by an average of 2,001.86 times and 130.31 times on seven datasets, respectively.
- Abstract(参考訳): 複雑なアノテーションを持つグラフは最も強力なデータ型であり、絶えず進化し、教師なしの動的グラフ表現のさらなる探索を動機付けている。
代表的なパラダイムの1つはグラフの対照的な学習である。
統計グラフの拡張ビュー間の相互情報を最大化することにより、自己教師付き信号を構築する。
しかし、セマンティクスとラベルは拡張プロセス内で変更され、下流タスクのパフォーマンスが大幅に低下する可能性がある。
この欠点は動的グラフ上で大きく拡大される。
この問題に対処するため,我々はCLDGというシンプルなフレームワークを設計した。
まず、動的グラフは時間的変換の不変性が異なることを詳しく述べる。
そこで我々は,時間的に持続する信号を抽出するサンプリング層を提案する。
これはノードが一貫した局所的およびグローバルな表現、すなわちタイムパンビューの下での時間的変換不変性を維持することを奨励する。
広範にわたる実験により, 教師なしベースライン8点を上回り, 4つの半教師付き手法に対する競争力を示すことにより, 7つのデータセット上での手法の有効性と効率を実証した。
既存の動的グラフ法と比較して、モデルパラメータとトレーニング時間の平均は7つのデータセットで平均2,001.86回、130.31回減少する。
関連論文リスト
- TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphsは階層的時間グラフとして動的相互作用を特徴付ける新しいアプローチである。
提案手法は,コンパクトなグラフベース表現を用いて相互作用をモデル化し,多種多様な時間スケールでの適応推論を可能にする。
我々は,サッカーシミュレータ,抵抗ゲーム,MOMA人間活動データセットなど,複雑でダイナミックなエージェントインタラクションを持つ複数のデータセット上でTimeGraphsを評価する。
論文 参考訳(メタデータ) (2024-01-06T06:26:49Z) - ENGAGE: Explanation Guided Data Augmentation for Graph Representation
Learning [34.23920789327245]
本稿では,グラフのキー部分を保存するために,コントラスト的な拡張過程を導出するENGAGEを提案する。
また、構造情報と特徴情報を摂動するグラフ上に2つのデータ拡張スキームを設計する。
論文 参考訳(メタデータ) (2023-07-03T14:33:14Z) - Instant Representation Learning for Recommendation over Large Dynamic
Graphs [29.41179019520622]
動的多重多元グラフのための新しいグラフニューラルネットワークSUPAを提案する。
新しいエッジごとに、SUPAは影響のあるサブグラフをサンプリングし、2つの対話ノードの表現を更新し、その相互作用情報をサンプリングされたサブグラフに伝達する。
SuPAをオンラインでインクリメンタルにトレーニングするために、大規模な動的グラフのシングルパストレーニングのための効率的なワークフローであるInsLearnを提案する。
論文 参考訳(メタデータ) (2023-05-22T15:36:10Z) - Localized Contrastive Learning on Graphs [110.54606263711385]
局所グラフコントラスト学習(Local-GCL)という,シンプルだが効果的なコントラストモデルを導入する。
その単純さにもかかわらず、Local-GCLは、様々なスケールと特性を持つグラフ上の自己教師付きノード表現学習タスクにおいて、非常に競争力のある性能を達成する。
論文 参考訳(メタデータ) (2022-12-08T23:36:00Z) - DyTed: Disentangled Representation Learning for Discrete-time Dynamic
Graph [59.583555454424]
離散時間動的グラフ、すなわちDyTedのための新しいディペンタングル表現学習フレームワークを提案する。
本研究では,時間不変の表現と時間変動の表現を効果的に識別する構造的コントラスト学習とともに,時間的クリップのコントラスト学習タスクを特別に設計する。
論文 参考訳(メタデータ) (2022-10-19T14:34:12Z) - ARIEL: Adversarial Graph Contrastive Learning [51.14695794459399]
ARIELは、ノードレベルとグラフレベルの両方の分類タスクにおいて、現在のグラフコントラスト学習法よりも一貫して優れている。
ARIELは敵の攻撃に対してより堅牢である。
論文 参考訳(メタデータ) (2022-08-15T01:24:42Z) - Adversarial Graph Contrastive Learning with Information Regularization [51.14695794459399]
コントラスト学習はグラフ表現学習において有効な方法である。
グラフ上のデータ拡張は、はるかに直感的ではなく、高品質のコントラスト的なサンプルを提供するのがずっと難しい。
逆グラフ比較学習(Adversarial Graph Contrastive Learning, ARIEL)を提案する。
さまざまな実世界のデータセット上でのノード分類タスクにおいて、現在のグラフのコントラスト学習方法よりも一貫して優れています。
論文 参考訳(メタデータ) (2022-02-14T05:54:48Z) - Deep Dynamic Effective Connectivity Estimation from Multivariate Time
Series [0.0]
我々はニューラルネットワークトレーニング(DECENNT)による動的有効接続推定を開発する。
DECENNTは5つの異なるタスクに対して最先端(SOTA)メソッドを上回り、解釈可能なタスク固有の動的グラフを推論する。
論文 参考訳(メタデータ) (2022-02-04T21:14:21Z) - Dynamic Graph Representation Learning via Graph Transformer Networks [41.570839291138114]
動的グラフ変換器 (DGT) を用いた動的グラフ学習手法を提案する。
DGTは、グラフトポロジを効果的に学習し、暗黙のリンクをキャプチャするための時空間符号化を持つ。
DGTはいくつかの最先端のベースラインと比較して優れた性能を示す。
論文 参考訳(メタデータ) (2021-11-19T21:44:23Z) - Multilayer Clustered Graph Learning [66.94201299553336]
我々は、観測された層を代表グラフに適切に集約するために、データ忠実度用語として対照的な損失を用いる。
実験により,本手法がクラスタクラスタw.r.tに繋がることが示された。
クラスタリング問題を解くためのクラスタリングアルゴリズムを学習する。
論文 参考訳(メタデータ) (2020-10-29T09:58:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。