論文の概要: HEC-GCN: Hypergraph Enhanced Cascading Graph Convolution Network for Multi-Behavior Recommendation
- arxiv url: http://arxiv.org/abs/2412.14476v1
- Date: Thu, 19 Dec 2024 02:57:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-20 13:29:18.549143
- Title: HEC-GCN: Hypergraph Enhanced Cascading Graph Convolution Network for Multi-Behavior Recommendation
- Title(参考訳): HEC-GCN:マルチビヘイビアレコメンデーションのためのハイパーグラフ強化カスケードグラフ畳み込みネットワーク
- Authors: Yabo Yin, Xiaofei Zhu, Wenshan Wang, Yihao Zhang, Pengfei Wang, Yixing Fan, Jiafeng Guo,
- Abstract要約: マルチビヘイビアレコメンデーション(HEC-GCN)のためのHypergraph Enhanced Cascading Graph Convolution Networkという新しいアプローチを提案する。
まず,行動特化相互作用グラフと対応するハイパーグラフをケースド方式で同時にモデル化することにより,ユーザや各行動項目間の細粒度と粗粒度の相関関係を探索する。
- 参考スコア(独自算出の注目度): 41.65320959602054
- License:
- Abstract: Multi-behavior recommendation (MBR) has garnered growing attention recently due to its ability to mitigate the sparsity issue by inferring user preferences from various auxiliary behaviors to improve predictions for the target behavior. Although existing research on MBR has yielded impressive results, they still face two major limitations. First, previous methods mainly focus on modeling fine-grained interaction information between users and items under each behavior, which may suffer from sparsity issue. Second, existing models usually concentrate on exploiting dependencies between two consecutive behaviors, leaving intra- and inter-behavior consistency largely unexplored. To the end, we propose a novel approach named Hypergraph Enhanced Cascading Graph Convolution Network for multi-behavior recommendation (HEC-GCN). To be specific, we first explore both fine- and coarse-grained correlations among users or items of each behavior by simultaneously modeling the behavior-specific interaction graph and its corresponding hypergraph in a cascaded manner. Then, we propose a behavior consistency-guided alignment strategy that ensures consistent representations between the interaction graph and its associated hypergraph for each behavior, while also maintaining representation consistency across different behaviors. Extensive experiments and analyses on three public benchmark datasets demonstrate that our proposed approach is consistently superior to previous state-of-the-art methods due to its capability to effectively attenuate the sparsity issue as well as preserve both intra- and inter-behavior consistencies. The code is available at https://github.com/marqu22/HEC-GCN.git.
- Abstract(参考訳): マルチビヘイビアレコメンデーション(MBR)は,様々な補助行動からユーザの嗜好を推測し,目標行動の予測を改善することで,スパシティ問題を緩和する能力によって近年注目を集めている。
MBRに関する既存の研究は印象的な成果を上げているが、それでも2つの大きな限界に直面している。
まず,各行動におけるユーザとアイテム間のきめ細かいインタラクション情報をモデル化することに焦点を当てた。
第二に、既存のモデルは、通常、2つの連続した振る舞い間の依存関係を活用することに集中し、行動内と行動間整合性はほとんど探索されていない。
最後に,マルチビヘイビアレコメンデーション(HEC-GCN)のためのHypergraph Enhanced Cascading Graph Convolution Networkという新しいアプローチを提案する。
まず,行動特化相互作用グラフと対応するハイパーグラフをケースド方式で同時にモデル化することにより,ユーザや各行動項目間の細粒度と粗粒度の相関関係を探索する。
そこで我々は,各行動に対する対話グラフとその関連ハイパーグラフ間の一貫した表現を保証するとともに,異なる行動間での表現整合性を維持する行動整合性誘導型アライメント戦略を提案する。
3つの公開ベンチマークデータセットの大規模な実験と分析により,提案手法は従来の最先端手法よりも一貫して優れていることが示された。
コードはhttps://github.com/marqu22/HEC-GCN.gitで公開されている。
関連論文リスト
- Behavior Pattern Mining-based Multi-Behavior Recommendation [22.514959709811446]
行動パターンマイニングに基づくマルチ行動レコメンデーション(BPMR)を紹介する。
BPMRは、ユーザとアイテム間の多様な相互作用パターンを広範囲に調査し、これらのパターンを推奨する機能として利用します。
実世界の3つのデータセットに対する実験的評価は、BPMRが既存の最先端アルゴリズムを大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2024-08-22T06:41:59Z) - Personalized Behavior-Aware Transformer for Multi-Behavior Sequential
Recommendation [25.400756652696895]
マルチビヘイビアシーケンスレコメンデーション(MBSR)問題に対するパーソナライズされた行動認識変換フレームワーク(PBAT)を提案する。
PBATは表現層にパーソナライズされた振舞いパターン生成器を開発し,逐次学習のための動的・識別的な振舞いパターンを抽出する。
3つのベンチマークデータセットで実験を行い、その結果、フレームワークの有効性と解釈性を示した。
論文 参考訳(メタデータ) (2024-02-22T12:03:21Z) - Impression-Informed Multi-Behavior Recommender System: A Hierarchical
Graph Attention Approach [4.03161352925235]
textbfHierarchical textbfMulti-behavior textbfGraph Attention textbfNetwork (HMGN)を紹介する。
この先駆的なフレームワークは、注意機構を利用して、行動内および行動内の両方から情報を識別する。
従来のグラフニューラルネットワーク手法に比べて,NDCG@100で最大64%の顕著なパフォーマンス向上を登録する。
論文 参考訳(メタデータ) (2023-09-06T17:09:43Z) - GUESR: A Global Unsupervised Data-Enhancement with Bucket-Cluster
Sampling for Sequential Recommendation [58.6450834556133]
本研究では,グローバルな視点から複雑な関連性を持つ項目表現を強化するために,グラフコントラスト学習を提案する。
本稿では,CapsNetモジュールを拡張したターゲットアテンション機構により,ユーザの動的嗜好を導出する。
提案したGUESRは,大幅な改善を達成できただけでなく,汎用的な拡張戦略ともみなすことができた。
論文 参考訳(メタデータ) (2023-03-01T05:46:36Z) - DDGHM: Dual Dynamic Graph with Hybrid Metric Training for Cross-Domain
Sequential Recommendation [15.366783212837515]
Sequential Recommendation (SR) は、ユーザがアイテム間を移動する方法をモデル化することによって、ユーザの行動の進化パターンを特徴付ける。
この問題を解決するため、我々はクロスドメインシーケンスレコメンデーション(CDSR)に焦点を当てる。
本稿では,CDSR問題のための新しいフレームワークであるDDGHMを提案する。
論文 参考訳(メタデータ) (2022-09-21T07:53:06Z) - Multi-Behavior Sequential Recommendation with Temporal Graph Transformer [66.10169268762014]
マルチビヘイビア・インタラクティブなパターンを意識した動的ユーザ・イテム関係学習に取り組む。
本稿では,動的短期および長期のユーザ・イテム対話パターンを共同でキャプチャする,TGT(Temporal Graph Transformer)レコメンデーションフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-06T15:42:54Z) - Enhancing Sequential Recommendation with Graph Contrastive Learning [64.05023449355036]
本稿では、逐次推薦のためのグラフコントラスト学習(GCL4SR)という、新しいシーケンシャルレコメンデーションフレームワークを提案する。
GCL4SRは、すべてのユーザのインタラクションシーケンスに基づいて構築された重み付きアイテム遷移グラフ(WITG)を使用して、各インタラクションのグローバルなコンテキスト情報を提供し、シーケンスデータのノイズ情報を弱める。
実世界のデータセットの実験では、GCL4SRは最先端のシーケンシャルレコメンデーションメソッドよりも一貫して優れていることが示されている。
論文 参考訳(メタデータ) (2022-05-30T03:53:31Z) - Knowledge-Enhanced Hierarchical Graph Transformer Network for
Multi-Behavior Recommendation [56.12499090935242]
本研究では,ユーザとレコメンデータシステムにおける項目間の多種類の対話パターンを探索する知識強化階層型グラフトランスフォーマネットワーク(KHGT)を提案する。
KHGTはグラフ構造化ニューラルネットワーク上に構築され、タイプ固有の振る舞い特性をキャプチャする。
KHGTは、様々な評価設定において、最先端のレコメンデーション手法よりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2021-10-08T09:44:00Z) - Hyper Meta-Path Contrastive Learning for Multi-Behavior Recommendation [61.114580368455236]
マルチビヘイビア情報によるユーザ購入予測は、現在のレコメンデーションシステムでは難しい問題である。
本稿では,ハイパーメタパスやハイパーメタグラフを構築するためのハイパーメタパスの概念を提案する。
最近のグラフコントラスト学習の成功により、異なる振る舞い間の依存関係を理解するために固定されたスキームを割り当てるのではなく、ユーザ行動パターンの埋め込みを適応的に学習する。
論文 参考訳(メタデータ) (2021-09-07T04:28:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。