論文の概要: Behavior Pattern Mining-based Multi-Behavior Recommendation
- arxiv url: http://arxiv.org/abs/2408.12152v1
- Date: Thu, 22 Aug 2024 06:41:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 17:22:20.159691
- Title: Behavior Pattern Mining-based Multi-Behavior Recommendation
- Title(参考訳): 行動パターンマイニングに基づく多行動勧告
- Authors: Haojie Li, Zhiyong Cheng, Xu Yu, Jinhuan Liu, Guanfeng Liu, Junwei Du,
- Abstract要約: 行動パターンマイニングに基づくマルチ行動レコメンデーション(BPMR)を紹介する。
BPMRは、ユーザとアイテム間の多様な相互作用パターンを広範囲に調査し、これらのパターンを推奨する機能として利用します。
実世界の3つのデータセットに対する実験的評価は、BPMRが既存の最先端アルゴリズムを大幅に上回っていることを示している。
- 参考スコア(独自算出の注目度): 22.514959709811446
- License:
- Abstract: Multi-behavior recommendation systems enhance effectiveness by leveraging auxiliary behaviors (such as page views and favorites) to address the limitations of traditional models that depend solely on sparse target behaviors like purchases. Existing approaches to multi-behavior recommendations typically follow one of two strategies: some derive initial node representations from individual behavior subgraphs before integrating them for a comprehensive profile, while others interpret multi-behavior data as a heterogeneous graph, applying graph neural networks to achieve a unified node representation. However, these methods do not adequately explore the intricate patterns of behavior among users and items. To bridge this gap, we introduce a novel algorithm called Behavior Pattern mining-based Multi-behavior Recommendation (BPMR). Our method extensively investigates the diverse interaction patterns between users and items, utilizing these patterns as features for making recommendations. We employ a Bayesian approach to streamline the recommendation process, effectively circumventing the challenges posed by graph neural network algorithms, such as the inability to accurately capture user preferences due to over-smoothing. Our experimental evaluation on three real-world datasets demonstrates that BPMR significantly outperforms existing state-of-the-art algorithms, showing an average improvement of 268.29% in Recall@10 and 248.02% in NDCG@10 metrics. The code of our BPMR is openly accessible for use and further research at https://github.com/rookitkitlee/BPMR.
- Abstract(参考訳): マルチビヘイビアレコメンデーションシステムは、ページビューやお気に入りなどの補助行動を活用して、購入のような粗末なターゲット行動にのみ依存する従来のモデルの限界に対処することで、効果を高める。
既存のマルチビヘイビアレコメンデーションへのアプローチは、一般的に2つの戦略の1つに従う: あるものは、個々の振る舞いのサブグラフから初期ノード表現を導出し、あるものは包括的プロファイルとして統合し、他方は、複数のビヘイビアデータを異質なグラフとして解釈し、グラフニューラルネットワークを適用して統一されたノード表現を実現する。
しかし,これらの手法はユーザや項目間の複雑な行動パターンを適切に探索するものではない。
このギャップを埋めるために,行動パターンマイニングに基づくマルチビヘイビア・レコメンデーション(BPMR)と呼ばれる新しいアルゴリズムを導入する。
提案手法は,ユーザとアイテム間の多様なインタラクションパターンを広範囲に調査し,これらのパターンをレコメンデーション機能として活用する。
我々は、推薦プロセスの合理化にベイズ的アプローチを採用し、過剰なスムーシングによるユーザの好みを正確に把握できないなど、グラフニューラルネットワークアルゴリズムがもたらす課題を効果的に回避する。
実世界の3つのデータセットを実験的に評価したところ、BPMRは既存の最先端アルゴリズムを著しく上回り、Recall@10では268.29%、NDCG@10では248.02%の平均的な改善を示している。
BPMRのコードはオープンに利用でき、https://github.com/rookitkitlee/BPMR.comでさらに研究しています。
関連論文リスト
- Online Clustering of Dueling Bandits [59.09590979404303]
本稿では、優先フィードバックに基づく協調的な意思決定を可能にするために、最初の「デュエルバンディットアルゴリズムのクラスタリング」を導入する。
本稿では,(1)ユーザ報酬関数をコンテキストベクトルの線形関数としてモデル化する線形デューリング帯域のクラスタリング(COLDB)と,(2)ニューラルネットワークを用いて複雑な非線形ユーザ報酬関数をモデル化するニューラルデューリング帯域のクラスタリング(CONDB)の2つの新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-02-04T07:55:41Z) - HEC-GCN: Hypergraph Enhanced Cascading Graph Convolution Network for Multi-Behavior Recommendation [41.65320959602054]
マルチビヘイビアレコメンデーション(HEC-GCN)のためのHypergraph Enhanced Cascading Graph Convolution Networkという新しいアプローチを提案する。
まず,行動特化相互作用グラフと対応するハイパーグラフをケースド方式で同時にモデル化することにより,ユーザや各行動項目間の細粒度と粗粒度の相関関係を探索する。
論文 参考訳(メタデータ) (2024-12-19T02:57:02Z) - Denoising Pre-Training and Customized Prompt Learning for Efficient Multi-Behavior Sequential Recommendation [69.60321475454843]
マルチビヘイビアシークエンシャルレコメンデーションに適した,最初の事前学習および迅速な学習パラダイムであるDPCPLを提案する。
事前学習段階において,複数の時間スケールでノイズを除去する新しい行動マイナ (EBM) を提案する。
次に,提案するCustomized Prompt Learning (CPL)モジュールを用いて,事前学習したモデルを高効率にチューニングすることを提案する。
論文 参考訳(メタデータ) (2024-08-21T06:48:38Z) - Behavior-Contextualized Item Preference Modeling for Multi-Behavior Recommendation [30.715182718492244]
本稿では,マルチビヘイビア・レコメンデーションのためのビヘイビア・コンテクスチュアライズド・アイテム・プライオリティ・モデリング(BCIPM)を提案する。
提案する行動文脈化項目選好ネットワークは,それぞれの行動の中でユーザの特定の項目選好を識別し,学習する。
その後、最終勧告の目的行動に関連する嗜好のみを考慮し、補助行動からノイズを著しく低減する。
論文 参考訳(メタデータ) (2024-04-28T12:46:36Z) - Neural Graph Collaborative Filtering Using Variational Inference [19.80976833118502]
本稿では,変分グラフオートエンコーダを用いて学習した表現を組み込む新しいフレームワークとして,変分埋め込み協調フィルタリング(GVECF)を導入する。
提案手法は,テストデータに対するリコールを最大13.78%改善する。
論文 参考訳(メタデータ) (2023-11-20T15:01:33Z) - Ordinal Graph Gamma Belief Network for Social Recommender Systems [54.9487910312535]
我々は,階層型ベイズモデルであるオーディナルグラフファクター解析(OGFA)を開発し,ユーザ・イテムとユーザ・ユーザインタラクションを共同でモデル化する。
OGFAは、優れたレコメンデーションパフォーマンスを達成するだけでなく、代表ユーザの好みに応じた解釈可能な潜在因子も抽出する。
我々はOGFAを,マルチ確率層深層確率モデルであるオーディナルグラフガンマ信念ネットワークに拡張する。
論文 参考訳(メタデータ) (2022-09-12T09:19:22Z) - Multi-Behavior Enhanced Recommendation with Cross-Interaction
Collaborative Relation Modeling [42.6279077675585]
本稿では,グラフニューラルマルチビヘイビア拡張レコメンデーションフレームワークを提案する。
グラフベースのメッセージパッシングアーキテクチャの下で、異なるタイプのユーザ-テムインタラクション間の依存関係を明示的にモデル化します。
実世界のレコメンデーションデータセットの実験は、GNMRが最先端の手法を一貫して上回っていることを示している。
論文 参考訳(メタデータ) (2022-01-07T03:12:37Z) - Knowledge-Enhanced Hierarchical Graph Transformer Network for
Multi-Behavior Recommendation [56.12499090935242]
本研究では,ユーザとレコメンデータシステムにおける項目間の多種類の対話パターンを探索する知識強化階層型グラフトランスフォーマネットワーク(KHGT)を提案する。
KHGTはグラフ構造化ニューラルネットワーク上に構築され、タイプ固有の振る舞い特性をキャプチャする。
KHGTは、様々な評価設定において、最先端のレコメンデーション手法よりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2021-10-08T09:44:00Z) - Hyper Meta-Path Contrastive Learning for Multi-Behavior Recommendation [61.114580368455236]
マルチビヘイビア情報によるユーザ購入予測は、現在のレコメンデーションシステムでは難しい問題である。
本稿では,ハイパーメタパスやハイパーメタグラフを構築するためのハイパーメタパスの概念を提案する。
最近のグラフコントラスト学習の成功により、異なる振る舞い間の依存関係を理解するために固定されたスキームを割り当てるのではなく、ユーザ行動パターンの埋め込みを適応的に学習する。
論文 参考訳(メタデータ) (2021-09-07T04:28:09Z) - Sequential Recommendation with Self-Attentive Multi-Adversarial Network [101.25533520688654]
逐次レコメンデーションにおける文脈情報の影響を明示的にモデル化するためのMFGAN(Multi-Factor Generative Adversarial Network)を提案する。
当社のフレームワークは,複数種類の因子情報を組み込むことが柔軟であり,各因子が推奨決定にどのように貢献するかを時間とともに追跡することができる。
論文 参考訳(メタデータ) (2020-05-21T12:28:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。