Statistical Undersampling with Mutual Information and Support Points
- URL: http://arxiv.org/abs/2412.14527v1
- Date: Thu, 19 Dec 2024 04:48:29 GMT
- Title: Statistical Undersampling with Mutual Information and Support Points
- Authors: Alex Mak, Shubham Sahoo, Shivani Pandey, Yidan Yue, Linglong Kong,
- Abstract summary: Class imbalance and distributional differences in large datasets present significant challenges for classification tasks machine learning.
This work introduces two novel undersampling approaches: mutual information-based stratified simple random sampling and support points optimization.
- Score: 4.118796935183671
- License:
- Abstract: Class imbalance and distributional differences in large datasets present significant challenges for classification tasks machine learning, often leading to biased models and poor predictive performance for minority classes. This work introduces two novel undersampling approaches: mutual information-based stratified simple random sampling and support points optimization. These methods prioritize representative data selection, effectively minimizing information loss. Empirical results across multiple classification tasks demonstrate that our methods outperform traditional undersampling techniques, achieving higher balanced classification accuracy. These findings highlight the potential of combining statistical concepts with machine learning to address class imbalance in practical applications.
Related papers
- Learning Confidence Bounds for Classification with Imbalanced Data [42.690254618937196]
We propose a novel framework that leverages learning theory and concentration inequalities to overcome the shortcomings of traditional solutions.
Our method can effectively adapt to the varying degrees of imbalance across different classes, resulting in more robust and reliable classification outcomes.
arXiv Detail & Related papers (2024-07-16T16:02:27Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
Imbalanced datasets are commonly observed in various real-world applications, presenting significant challenges in training classifiers.
We propose generating synthetic samples iteratively by mixing data samples from both minority and majority classes.
We demonstrate the effectiveness of our proposed framework through extensive experiments conducted on seven publicly available benchmark datasets.
arXiv Detail & Related papers (2023-08-28T18:48:34Z) - Imbalanced Classification via Explicit Gradient Learning From Augmented
Data [0.0]
We propose a novel deep meta-learning technique to augment a given imbalanced dataset with new minority instances.
The advantage of the proposed method is demonstrated on synthetic and real-world datasets with various imbalance ratios.
arXiv Detail & Related papers (2022-02-21T22:16:50Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
Modern deep neural networks can easily overfit to biased training data containing corrupted labels or class imbalance.
Sample re-weighting methods are popularly used to alleviate this data bias issue.
We propose a meta-model capable of adaptively learning an explicit weighting scheme directly from data.
arXiv Detail & Related papers (2022-02-11T13:49:51Z) - Contrastive Learning for Fair Representations [50.95604482330149]
Trained classification models can unintentionally lead to biased representations and predictions.
Existing debiasing methods for classification models, such as adversarial training, are often expensive to train and difficult to optimise.
We propose a method for mitigating bias by incorporating contrastive learning, in which instances sharing the same class label are encouraged to have similar representations.
arXiv Detail & Related papers (2021-09-22T10:47:51Z) - A Novel Adaptive Minority Oversampling Technique for Improved
Classification in Data Imbalanced Scenarios [23.257891827728827]
Imbalance in the proportion of training samples belonging to different classes often poses performance degradation of conventional classifiers.
We propose a novel three step technique to address imbalanced data.
arXiv Detail & Related papers (2021-03-24T09:58:02Z) - Conditional Wasserstein GAN-based Oversampling of Tabular Data for
Imbalanced Learning [10.051309746913512]
We propose an oversampling method based on a conditional Wasserstein GAN.
We benchmark our method against standard oversampling methods and the imbalanced baseline on seven real-world datasets.
arXiv Detail & Related papers (2020-08-20T20:33:56Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
We present a method for learning multiple models, incorporating an objective that pressures each to learn a distinct way to solve the task.
We demonstrate our framework's ability to facilitate rapid adaptation to distribution shift.
arXiv Detail & Related papers (2020-06-12T12:23:50Z) - Compressing Large Sample Data for Discriminant Analysis [78.12073412066698]
We consider the computational issues due to large sample size within the discriminant analysis framework.
We propose a new compression approach for reducing the number of training samples for linear and quadratic discriminant analysis.
arXiv Detail & Related papers (2020-05-08T05:09:08Z) - M2m: Imbalanced Classification via Major-to-minor Translation [79.09018382489506]
In most real-world scenarios, labeled training datasets are highly class-imbalanced, where deep neural networks suffer from generalizing to a balanced testing criterion.
In this paper, we explore a novel yet simple way to alleviate this issue by augmenting less-frequent classes via translating samples from more-frequent classes.
Our experimental results on a variety of class-imbalanced datasets show that the proposed method improves the generalization on minority classes significantly compared to other existing re-sampling or re-weighting methods.
arXiv Detail & Related papers (2020-04-01T13:21:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.