Overview of AI and Communication for 6G Network: Fundamentals, Challenges, and Future Research Opportunities
- URL: http://arxiv.org/abs/2412.14538v2
- Date: Sat, 21 Dec 2024 09:48:34 GMT
- Title: Overview of AI and Communication for 6G Network: Fundamentals, Challenges, and Future Research Opportunities
- Authors: Qimei Cui, Xiaohu You, Ni Wei, Guoshun Nan, Xuefei Zhang, Jianhua Zhang, Xinchen Lyu, Ming Ai, Xiaofeng Tao, Zhiyong Feng, Ping Zhang, Qingqing Wu, Meixia Tao, Yongming Huang, Chongwen Huang, Guangyi Liu, Chenghui Peng, Zhiwen Pan, Tao Sun, Dusit Niyato, Tao Chen, Muhammad Khurram Khan, Abbas Jamalipour, Mohsen Guizani, Chau Yuen,
- Abstract summary: The integration of artificial intelligence (AI) and communication for sixth-generation (6G) network is emerging as a revolutionary architecture.<n>This paper presents a comprehensive overview of AI and communication for 6G networks, emphasizing their foundational principles, inherent challenges, and future research opportunities.
- Score: 148.601430677814
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the increasing demand for seamless connectivity and intelligent communication, the integration of artificial intelligence (AI) and communication for sixth-generation (6G) network is emerging as a revolutionary architecture. This paper presents a comprehensive overview of AI and communication for 6G networks, emphasizing their foundational principles, inherent challenges, and future research opportunities. We commence with a retrospective analysis of AI and the evolution of large-scale AI models, underscoring their pivotal roles in shaping contemporary communication technologies. The discourse then transitions to a detailed exposition of the envisioned integration of AI within 6G networks, delineated across three progressive developmental stages. The initial stage, AI for Network, focuses on employing AI to augment network performance, optimize efficiency, and enhance user service experiences. The subsequent stage, Network for AI, highlights the role of the network in facilitating and buttressing AI operations and presents key enabling technologies, including digital twins for AI and semantic communication. In the final stage, AI as a Service, it is anticipated that future 6G networks will innately provide AI functions as services and support application scenarios like immersive communication and intelligent industrial robots. Specifically, we have defined the quality of AI service, which refers to the measurement framework system of AI services within the network. In addition to these developmental stages, we thoroughly examine the standardization processes pertinent to AI in network contexts, highlighting key milestones and ongoing efforts. Finally, we outline promising future research opportunities that could drive the evolution and refinement of AI and communication for 6G, positioning them as a cornerstone of next-generation communication infrastructure.
Related papers
- Artificial General Intelligence (AGI)-Native Wireless Systems: A Journey Beyond 6G [58.440115433585824]
Building future wireless systems that support services like digital twins (DTs) is challenging to achieve through advances to conventional technologies like meta-surfaces.
While artificial intelligence (AI)-native networks promise to overcome some limitations of wireless technologies, developments still rely on AI tools like neural networks.
This paper revisits the concept of AI-native wireless systems, equipping them with the common sense necessary to transform them into artificial general intelligence (AGI)-native systems.
arXiv Detail & Related papers (2024-04-29T04:51:05Z) - Decentralized Multi-Party Multi-Network AI for Global Deployment of 6G Wireless Systems [31.754166695074353]
This paper introduces the Decentralized Multi-Party, Multi-Network AI (DMMAI) framework for integrating AI into 6G networks deployed at scale.
DMMAI harmonizes AI-driven controls across diverse network platforms and thus facilitates networks that autonomously configure, monitor, and repair themselves.
Our approach explores multi-network orchestration and AI control integration, filling a critical gap in standardized frameworks for AI-driven coordination in 6G networks.
arXiv Detail & Related papers (2024-04-15T15:21:25Z) - Green Edge AI: A Contemporary Survey [46.11332733210337]
The transformative power of AI is derived from the utilization of deep neural networks (DNNs)
Deep learning (DL) is increasingly being transitioned to wireless edge networks in proximity to end-user devices (EUDs)
Despite its potential, edge AI faces substantial challenges, mostly due to the dichotomy between the resource limitations of wireless edge networks and the resource-intensive nature of DL.
arXiv Detail & Related papers (2023-12-01T04:04:37Z) - AI-native Interconnect Framework for Integration of Large Language Model
Technologies in 6G Systems [3.5370806221677245]
This paper explores the seamless integration of Large Language Models (LLMs) and Generalized Pretrained Transformers (GPT) within 6G systems.
LLMs and GPTs will collaboratively take center stage alongside traditional pre-generative AI and machine learning (ML) algorithms.
arXiv Detail & Related papers (2023-11-10T02:59:16Z) - Foundation Model Based Native AI Framework in 6G with Cloud-Edge-End
Collaboration [56.330705072736166]
We propose a 6G native AI framework based on foundation models, provide a customization approach for intent-aware PFM, and outline a novel cloud-edge-end collaboration paradigm.
As a practical use case, we apply this framework for orchestration, achieving the maximum sum rate within a wireless communication system.
arXiv Detail & Related papers (2023-10-26T15:19:40Z) - Large Language Models Empowered Autonomous Edge AI for Connected
Intelligence [51.269276328087855]
Edge artificial intelligence (Edge AI) is a promising solution to achieve connected intelligence.
This article presents a vision of autonomous edge AI systems that automatically organize, adapt, and optimize themselves to meet users' diverse requirements.
arXiv Detail & Related papers (2023-07-06T05:16:55Z) - Optimization Design for Federated Learning in Heterogeneous 6G Networks [27.273745760946962]
Federated learning (FL) is anticipated to be a key enabler for achieving ubiquitous AI in 6G networks.
There are several system and statistical heterogeneity challenges for effective and efficient FL implementation in 6G networks.
In this article, we investigate the optimization approaches that can effectively address the challenges.
arXiv Detail & Related papers (2023-03-15T02:18:21Z) - Landing AI on Networks: An equipment vendor viewpoint on Autonomous
Driving Networks [13.157685146274002]
We discuss challenges and opportunities of Autonomous Driving Network (ADN) driven by AI technologies.
To understand how AI can be successfully landed in current and future networks, we start by outlining challenges that are specific to the networking domain.
We then present a system view, clarifying how AI can be fitted in the network architecture.
arXiv Detail & Related papers (2022-04-26T16:51:00Z) - Edge Artificial Intelligence for 6G: Vision, Enabling Technologies, and
Applications [39.223546118441476]
6G will revolutionize the evolution of wireless from "connected things" to "connected intelligence"
Deep learning and big data analytics based AI systems require tremendous computation and communication resources.
edge AI stands out as a disruptive technology for 6G to seamlessly integrate sensing, communication, computation, and intelligence.
arXiv Detail & Related papers (2021-11-24T11:47:16Z) - The Next Decade of Telecommunications Artificial Intelligence [0.0]
The paper first outlines the individual roadmaps of mobile communications and artificial intelligence in the early stage.
The paper then introduces in detail the progress of artificial intelligence in the ecosystem of mobile communications.
Towards the next decade, the paper forecasts the prospective roadmap of telecommunications artificial intelligence.
arXiv Detail & Related papers (2021-01-19T07:33:44Z) - Towards Self-learning Edge Intelligence in 6G [143.1821636135413]
Edge intelligence, also called edge-native artificial intelligence (AI), is an emerging technological framework focusing on seamless integration of AI, communication networks, and mobile edge computing.
In this article, we identify the key requirements and challenges of edge-native AI in 6G.
arXiv Detail & Related papers (2020-10-01T02:16:40Z) - Artificial Intelligence for UAV-enabled Wireless Networks: A Survey [72.10851256475742]
Unmanned aerial vehicles (UAVs) are considered as one of the promising technologies for the next-generation wireless communication networks.
Artificial intelligence (AI) is growing rapidly nowadays and has been very successful.
We provide a comprehensive overview of some potential applications of AI in UAV-based networks.
arXiv Detail & Related papers (2020-09-24T07:11:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.