論文の概要: Trainable Adaptive Activation Function Structure (TAAFS) Enhances Neural Network Force Field Performance with Only Dozens of Additional Parameters
- arxiv url: http://arxiv.org/abs/2412.14655v1
- Date: Thu, 19 Dec 2024 09:06:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-20 13:30:32.068077
- Title: Trainable Adaptive Activation Function Structure (TAAFS) Enhances Neural Network Force Field Performance with Only Dozens of Additional Parameters
- Title(参考訳): トレーニング可能な適応活性化関数構造(TAAFS)は、追加パラメータの量だけでニューラルネットワークの力場性能を高める
- Authors: Enji Li,
- Abstract要約: TAAFS(Treatable Adaptive Function Activation Structure)
非線形なアクティベーションのための数学的定式化を選択する方法を提案する。
本研究では、TAAFSを様々なニューラルネットワークモデルに統合し、精度の向上を観察する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: At the heart of neural network force fields (NNFFs) is the architecture of neural networks, where the capacity to model complex interactions is typically enhanced through widening or deepening multilayer perceptrons (MLPs) or by increasing layers of graph neural networks (GNNs). These enhancements, while improving the model's performance, often come at the cost of a substantial increase in the number of parameters. By applying the Trainable Adaptive Activation Function Structure (TAAFS), we introduce a method that selects distinct mathematical formulations for non-linear activations, thereby increasing the precision of NNFFs with an insignificant addition to the parameter count. In this study, we integrate TAAFS into a variety of neural network models, resulting in observed accuracy improvements, and further validate these enhancements through molecular dynamics (MD) simulations using DeepMD.
- Abstract(参考訳): ニューラルネットワーク力場(NNFF)の中心はニューラルネットワークのアーキテクチャであり、複雑な相互作用をモデル化する能力は通常、多層パーセプトロン(MLP)の拡大または深化、あるいはグラフニューラルネットワーク(GNN)の層の増加によって強化される。
これらの拡張は、モデルの性能を改善する一方で、しばしばパラメータの数を大幅に増加させるコストを伴います。
TAAFS (Trainable Adaptive Activation Function Structure) を適用することにより,非線型なアクティベーションに対して異なる数学的定式化を選択する手法を導入し,パラメータ数に重要な加算を加えてNNFFの精度を向上する。
本研究では、TAAFSを様々なニューラルネットワークモデルに統合し、観測精度の向上を実現し、DeepMDを用いた分子動力学(MD)シミュレーションによりこれらの拡張を検証した。
関連論文リスト
- A Survey on Kolmogorov-Arnold Network [0.0]
Kolmogorov-Arnold Networks(KAN)の理論的基礎、進化、応用、そして将来の可能性
Kanは、固定活性化関数の代わりに学習可能なスプラインパラメータ化関数を使用することで、従来のニューラルネットワークと区別する。
本稿では,最近のニューラルアーキテクチャにおけるkanの役割を強調し,データ集約型アプリケーションにおける計算効率,解釈可能性,拡張性を改善するための今後の方向性を概説する。
論文 参考訳(メタデータ) (2024-11-09T05:54:17Z) - Advancing Spatio-Temporal Processing in Spiking Neural Networks through Adaptation [6.233189707488025]
本稿では、適応LIFニューロンとそのネットワークの動的、計算的、および学習特性について分析する。
適応LIFニューロンのネットワークの優越性は、複雑な時系列の予測と生成にまで及んでいることを示す。
論文 参考訳(メタデータ) (2024-08-14T12:49:58Z) - An Efficient Approach to Regression Problems with Tensor Neural Networks [5.345144592056051]
本稿では、非パラメトリック回帰問題に対処するテンソルニューラルネットワーク(TNN)を提案する。
TNNは従来のFeed-Forward Networks (FFN) や Radial Basis Function Networks (RBN) よりも優れた性能を示している。
このアプローチにおける重要な革新は、統計回帰とTNNフレームワーク内の数値積分の統合である。
論文 参考訳(メタデータ) (2024-06-14T03:38:40Z) - Towards Efficient Deep Spiking Neural Networks Construction with Spiking Activity based Pruning [17.454100169491497]
本稿では,Spking Channel Activity-based (SCA) network pruning frameworkという,畳み込みカーネルの動作レベルに基づく構造化プルーニング手法を提案する。
本手法は, 学習中の畳み込みカーネルの切断・再生によりネットワーク構造を動的に調整し, 現在の目標タスクへの適応性を高める。
論文 参考訳(メタデータ) (2024-06-03T07:44:37Z) - Gaussian Process Neural Additive Models [3.7969209746164325]
ランダムフーリエ特徴を用いたガウス過程の単一層ニューラルネットワーク構築を用いたニューラル付加モデル(NAM)の新たなサブクラスを提案する。
GP-NAMは凸目的関数と、特徴次元と線形に成長する訓練可能なパラメータの数が有利である。
GP-NAMは,パラメータ数を大幅に削減して,分類タスクと回帰タスクの両方において,同等あるいはより優れた性能が得られることを示す。
論文 参考訳(メタデータ) (2024-02-19T20:29:34Z) - Reparameterization through Spatial Gradient Scaling [69.27487006953852]
リパラメータ化は、学習中に畳み込み層を等価なマルチブランチ構造に変換することによって、ディープニューラルネットワークの一般化を改善することを目的としている。
本稿では,畳み込みネットワークにおける重み間の学習焦点を再分配する空間勾配スケーリング手法を提案する。
論文 参考訳(メタデータ) (2023-03-05T17:57:33Z) - Permutation Equivariant Neural Functionals [92.0667671999604]
この研究は、他のニューラルネットワークの重みや勾配を処理できるニューラルネットワークの設計を研究する。
隠れた層状ニューロンには固有の順序がないため, 深いフィードフォワードネットワークの重みに生じる置換対称性に着目する。
実験の結果, 置換同変ニューラル関数は多種多様なタスクに対して有効であることがわかった。
論文 参考訳(メタデータ) (2023-02-27T18:52:38Z) - A Generic Shared Attention Mechanism for Various Backbone Neural Networks [53.36677373145012]
自己注意モジュール(SAM)は、異なる層にまたがる強い相関した注意マップを生成する。
Dense-and-Implicit Attention (DIA)はSAMをレイヤ間で共有し、長期間のメモリモジュールを使用する。
我々のシンプルで効果的なDIAは、様々なネットワークバックボーンを一貫して拡張できます。
論文 参考訳(メタデータ) (2022-10-27T13:24:08Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Flexible Transmitter Network [84.90891046882213]
現在のニューラルネットワークはMPモデルに基づいて構築されており、通常はニューロンを他のニューロンから受信した信号の実際の重み付け集約上での活性化関数の実行として定式化する。
本稿では,フレキシブル・トランスミッタ(FT)モデルを提案する。
本稿では、最も一般的な完全接続型フィードフォワードアーキテクチャ上に構築された、フレキシブルトランスミッタネットワーク(FTNet)について述べる。
論文 参考訳(メタデータ) (2020-04-08T06:55:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。