MUSTER: Longitudinal Deformable Registration by Composition of Consecutive Deformations
- URL: http://arxiv.org/abs/2412.14671v1
- Date: Thu, 19 Dec 2024 09:22:19 GMT
- Title: MUSTER: Longitudinal Deformable Registration by Composition of Consecutive Deformations
- Authors: Edvard O. S. Grødem, Donatas Sederevičius, Esten H. Leonardsen, Bradley J. MacIntosh, Atle Bjørnerud, Till Schellhorn, Øystein Sørensen, Inge Amlien, Pablo F. Garrido, Anders M. Fjell,
- Abstract summary: This study introduces Multi-Session Temporal Registration (MUSTER), a novel method for longitudinal analysis of changes in medical images.
MUSTER improves upon conventional pairwise registration by incorporating more than two imaging sessions to recover longitudinal deformations.
We show that MUSTER can effectively identify patterns of neuro-degeneration from T1-weighted images and that these changes correlate with changes in cognition.
- Score: 0.0
- License:
- Abstract: Longitudinal imaging allows for the study of structural changes over time. One approach to detecting such changes is by non-linear image registration. This study introduces Multi-Session Temporal Registration (MUSTER), a novel method that facilitates longitudinal analysis of changes in extended series of medical images. MUSTER improves upon conventional pairwise registration by incorporating more than two imaging sessions to recover longitudinal deformations. Longitudinal analysis at a voxel-level is challenging due to effects of a changing image contrast as well as instrumental and environmental sources of bias between sessions. We show that local normalized cross-correlation as an image similarity metric leads to biased results and propose a robust alternative. We test the performance of MUSTER on a synthetic multi-site, multi-session neuroimaging dataset and show that, in various scenarios, using MUSTER significantly enhances the estimated deformations relative to pairwise registration. Additionally, we apply MUSTER on a sample of older adults from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. The results show that MUSTER can effectively identify patterns of neuro-degeneration from T1-weighted images and that these changes correlate with changes in cognition, matching the performance of state of the art segmentation methods. By leveraging GPU acceleration, MUSTER efficiently handles large datasets, making it feasible also in situations with limited computational resources.
Related papers
- MVICAD2: Multi-View Independent Component Analysis with Delays and Dilations [61.59658203704757]
We propose Multi-View Independent Component Analysis with Delays and Dilations (MVICAD2), which allows sources to differ across subjects in both temporal delays and dilations.
We present a model with identifiable sources, derive an approximation of its likelihood in closed form, and use regularization and optimization techniques to enhance performance.
arXiv Detail & Related papers (2025-01-13T15:47:02Z) - Deformation-Recovery Diffusion Model (DRDM): Instance Deformation for Image Manipulation and Synthesis [13.629617915974531]
Deformation-Recovery Diffusion Model (DRDM) is a diffusion-based generative model based on deformation diffusion and recovery.
DRDM is trained to learn to recover unreasonable deformation components, thereby restoring each randomly deformed image to a realistic distribution.
Experimental results in cardiac MRI and pulmonary CT show DRDM is capable of creating diverse, large (over 10% image size deformation scale) deformations.
arXiv Detail & Related papers (2024-07-10T01:26:48Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - Bayesian Unsupervised Disentanglement of Anatomy and Geometry for Deep Groupwise Image Registration [50.62725807357586]
This article presents a general Bayesian learning framework for multi-modal groupwise image registration.
We propose a novel hierarchical variational auto-encoding architecture to realise the inference procedure of the latent variables.
Experiments were conducted to validate the proposed framework, including four different datasets from cardiac, brain, and abdominal medical images.
arXiv Detail & Related papers (2024-01-04T08:46:39Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Variational Inference for Quantifying Inter-observer Variability in
Segmentation of Anatomical Structures [12.138198227748353]
Most segmentation methods simply model a mapping from an image to its single segmentation map and do not take the disagreement of annotators into consideration.
We propose a novel variational inference framework to model the distribution of plausible segmentation maps, given a specific MR image.
arXiv Detail & Related papers (2022-01-18T16:33:33Z) - Contrast Adaptive Tissue Classification by Alternating Segmentation and
Synthesis [0.21111026813272174]
We describe an approach using alternating segmentation and synthesis steps that adapts the contrast properties of the training data to the input image.
A notable advantage of this approach is that only a single example of the acquisition protocol is required to adapt to its contrast properties.
arXiv Detail & Related papers (2021-03-04T00:25:24Z) - Deep Group-wise Variational Diffeomorphic Image Registration [3.0022455491411653]
We propose to extend current learning-based image registration to allow simultaneous registration of multiple images.
We present a general mathematical framework that enables both registration of multiple images to their viscous geodesic average and registration in which any of the available images can be used as a fixed image.
arXiv Detail & Related papers (2020-10-01T07:37:28Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.