MVICAD2: Multi-View Independent Component Analysis with Delays and Dilations
- URL: http://arxiv.org/abs/2501.07426v1
- Date: Mon, 13 Jan 2025 15:47:02 GMT
- Title: MVICAD2: Multi-View Independent Component Analysis with Delays and Dilations
- Authors: Ambroise Heurtebise, Omar Chehab, Pierre Ablin, Alexandre Gramfort,
- Abstract summary: We propose Multi-View Independent Component Analysis with Delays and Dilations (MVICAD2), which allows sources to differ across subjects in both temporal delays and dilations.
We present a model with identifiable sources, derive an approximation of its likelihood in closed form, and use regularization and optimization techniques to enhance performance.
- Score: 61.59658203704757
- License:
- Abstract: Machine learning techniques in multi-view settings face significant challenges, particularly when integrating heterogeneous data, aligning feature spaces, and managing view-specific biases. These issues are prominent in neuroscience, where data from multiple subjects exposed to the same stimuli are analyzed to uncover brain activity dynamics. In magnetoencephalography (MEG), where signals are captured at the scalp level, estimating the brain's underlying sources is crucial, especially in group studies where sources are assumed to be similar for all subjects. Common methods, such as Multi-View Independent Component Analysis (MVICA), assume identical sources across subjects, but this assumption is often too restrictive due to individual variability and age-related changes. Multi-View Independent Component Analysis with Delays (MVICAD) addresses this by allowing sources to differ up to a temporal delay. However, temporal dilation effects, particularly in auditory stimuli, are common in brain dynamics, making the estimation of time delays alone insufficient. To address this, we propose Multi-View Independent Component Analysis with Delays and Dilations (MVICAD2), which allows sources to differ across subjects in both temporal delays and dilations. We present a model with identifiable sources, derive an approximation of its likelihood in closed form, and use regularization and optimization techniques to enhance performance. Through simulations, we demonstrate that MVICAD2 outperforms existing multi-view ICA methods. We further validate its effectiveness using the Cam-CAN dataset, and showing how delays and dilations are related to aging.
Related papers
- Multivariate Time Series Anomaly Detection by Capturing Coarse-Grained Intra- and Inter-Variate Dependencies [14.784236273395017]
We introduce MtsCID, a novel semi-supervised multivariate time series anomaly detection method.
We show that MtsCID achieves performance comparable or superior to state-of-the-art benchmark methods.
arXiv Detail & Related papers (2025-01-22T05:53:12Z) - Multi-Source Domain Adaptation with Transformer-based Feature Generation
for Subject-Independent EEG-based Emotion Recognition [0.5439020425819]
We propose a multi-source domain adaptation approach with a transformer-based feature generator (MSDA-TF) designed to leverage information from multiple sources.
During the adaptation process, we group the source subjects based on correlation values and aim to align the moments of the target subject with each source as well as within the sources.
MSDA-TF is validated on the SEED dataset and is shown to yield promising results.
arXiv Detail & Related papers (2024-01-04T16:38:47Z) - MultiView Independent Component Analysis with Delays [72.19163346293848]
We present MultiView Independent Component Analysis with Delays (MVICAD)
MVICAD builds on the MultiView ICA model by allowing sources to be delayed versions of some shared sources.
As ICA is often used in neuroscience, we show that latencies are age-related when applied to Cam-CAN, a large-scale magnetoencephalography (MEG) dataset.
arXiv Detail & Related papers (2023-12-01T10:33:16Z) - Correlation-aware Spatial-Temporal Graph Learning for Multivariate
Time-series Anomaly Detection [67.60791405198063]
We propose a correlation-aware spatial-temporal graph learning (termed CST-GL) for time series anomaly detection.
CST-GL explicitly captures the pairwise correlations via a multivariate time series correlation learning module.
A novel anomaly scoring component is further integrated into CST-GL to estimate the degree of an anomaly in a purely unsupervised manner.
arXiv Detail & Related papers (2023-07-17T11:04:27Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
We consider causal discovery in continuous-time for the study of dynamical systems.
We propose a causal discovery algorithm based on penalized Neural ODEs.
arXiv Detail & Related papers (2021-05-06T08:48:02Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z) - Interpretable Deep Representation Learning from Temporal Multi-view Data [4.2179426073904995]
We propose a generative model based on variational autoencoder and a recurrent neural network to infer the latent dynamics for multi-view temporal data.
We invoke our proposed model for analyzing three datasets on which we demonstrate the effectiveness and the interpretability of the model.
arXiv Detail & Related papers (2020-05-11T15:59:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.