Holistic Adversarially Robust Pruning
- URL: http://arxiv.org/abs/2412.14714v1
- Date: Thu, 19 Dec 2024 10:25:21 GMT
- Title: Holistic Adversarially Robust Pruning
- Authors: Qi Zhao, Christian Wressnegger,
- Abstract summary: We learn a global compression strategy that optimize how many parameters (compression rate) and which parameters (scoring connections) to prune specific to each layer individually.
Our method fine-tunes an existing model with dynamic regularization, that follows a step-wise incremental function balancing the different objectives.
The learned compression strategies allow us to maintain the pre-trained model natural accuracy and its adversarial robustness for a reduction by 99% of the network original size.
- Score: 15.760568867982903
- License:
- Abstract: Neural networks can be drastically shrunk in size by removing redundant parameters. While crucial for the deployment on resource-constraint hardware, oftentimes, compression comes with a severe drop in accuracy and lack of adversarial robustness. Despite recent advances, counteracting both aspects has only succeeded for moderate compression rates so far. We propose a novel method, HARP, that copes with aggressive pruning significantly better than prior work. For this, we consider the network holistically. We learn a global compression strategy that optimizes how many parameters (compression rate) and which parameters (scoring connections) to prune specific to each layer individually. Our method fine-tunes an existing model with dynamic regularization, that follows a step-wise incremental function balancing the different objectives. It starts by favoring robustness before shifting focus on reaching the target compression rate and only then handles the objectives equally. The learned compression strategies allow us to maintain the pre-trained model natural accuracy and its adversarial robustness for a reduction by 99% of the network original size. Moreover, we observe a crucial influence of non-uniform compression across layers.
Related papers
- Choose Your Model Size: Any Compression by a Single Gradient Descent [9.074689052563878]
We present Any Compression via Iterative Pruning (ACIP)
ACIP is an algorithmic approach to determine a compression-performance trade-off from a single gradient descent run.
We show that ACIP seamlessly complements common quantization-based compression techniques.
arXiv Detail & Related papers (2025-02-03T18:40:58Z) - Robust and Transferable Backdoor Attacks Against Deep Image Compression With Selective Frequency Prior [118.92747171905727]
This paper introduces a novel frequency-based trigger injection model for launching backdoor attacks with multiple triggers on learned image compression models.
We design attack objectives tailored to diverse scenarios, including: 1) degrading compression quality in terms of bit-rate and reconstruction accuracy; 2) targeting task-driven measures like face recognition and semantic segmentation.
Experiments show that our trigger injection models, combined with minor modifications to encoder parameters, successfully inject multiple backdoors and their triggers into a single compression model.
arXiv Detail & Related papers (2024-12-02T15:58:40Z) - Differential error feedback for communication-efficient decentralized learning [48.924131251745266]
We propose a new decentralized communication-efficient learning approach that blends differential quantization with error feedback.
We show that the resulting communication-efficient strategy is stable both in terms of mean-square error and average bit rate.
The results establish that, in the small step-size regime and with a finite number of bits, it is possible to attain the performance achievable in the absence of compression.
arXiv Detail & Related papers (2024-06-26T15:11:26Z) - Learning Accurate Performance Predictors for Ultrafast Automated Model
Compression [86.22294249097203]
We propose an ultrafast automated model compression framework called SeerNet for flexible network deployment.
Our method achieves competitive accuracy-complexity trade-offs with significant reduction of the search cost.
arXiv Detail & Related papers (2023-04-13T10:52:49Z) - Backdoor Attacks Against Deep Image Compression via Adaptive Frequency
Trigger [106.10954454667757]
We present a novel backdoor attack with multiple triggers against learned image compression models.
Motivated by the widely used discrete cosine transform (DCT) in existing compression systems and standards, we propose a frequency-based trigger injection model.
arXiv Detail & Related papers (2023-02-28T15:39:31Z) - Towards Hardware-Specific Automatic Compression of Neural Networks [0.0]
pruning and quantization are the major approaches to compress neural networks nowadays.
Effective compression policies consider the influence of the specific hardware architecture on the used compression methods.
We propose an algorithmic framework called Galen to search such policies using reinforcement learning utilizing pruning and quantization.
arXiv Detail & Related papers (2022-12-15T13:34:02Z) - Optimal Rate Adaption in Federated Learning with Compressed
Communications [28.16239232265479]
Federated Learning incurs high communication overhead, which can be greatly alleviated by compression for model updates.
tradeoff between compression and model accuracy in the networked environment remains unclear.
We present a framework to maximize the final model accuracy by strategically adjusting the compression each iteration.
arXiv Detail & Related papers (2021-12-13T14:26:15Z) - Towards Compact CNNs via Collaborative Compression [166.86915086497433]
We propose a Collaborative Compression scheme, which joints channel pruning and tensor decomposition to compress CNN models.
We achieve 52.9% FLOPs reduction by removing 48.4% parameters on ResNet-50 with only a Top-1 accuracy drop of 0.56% on ImageNet 2012.
arXiv Detail & Related papers (2021-05-24T12:07:38Z) - Attribution Preservation in Network Compression for Reliable Network
Interpretation [81.84564694303397]
Neural networks embedded in safety-sensitive applications rely on input attribution for hindsight analysis and network compression to reduce its size for edge-computing.
We show that these seemingly unrelated techniques conflict with each other as network compression deforms the produced attributions.
This phenomenon arises due to the fact that conventional network compression methods only preserve the predictions of the network while ignoring the quality of the attributions.
arXiv Detail & Related papers (2020-10-28T16:02:31Z) - End-to-end Learning of Compressible Features [35.40108701875527]
Pre-trained convolutional neural networks (CNNs) are powerful off-the-shelf feature generators.
CNNs are powerful off-the-shelf feature generators and have been shown to perform very well on a variety of tasks.
Unfortunately, the generated features are high dimensional and expensive to store.
We propose a learned method that jointly optimize for compressibility along with the task objective.
arXiv Detail & Related papers (2020-07-23T05:17:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.