Advances in Artificial Intelligence forDiabetes Prediction: Insights from a Systematic Literature Review
- URL: http://arxiv.org/abs/2412.14736v1
- Date: Thu, 19 Dec 2024 11:09:10 GMT
- Title: Advances in Artificial Intelligence forDiabetes Prediction: Insights from a Systematic Literature Review
- Authors: Pir Bakhsh Khokhar, Carmine Gravino, Fabio Palomba,
- Abstract summary: This systematic review explores the use of machine learning (ML) in predicting diabetes, focusing on datasets, algorithms, training methods, and evaluation metrics.
The review assesses the performance of ML algorithms like CNN, SVM, Logistic Regression, and XGBoost in predicting diabetes outcomes.
- Score: 8.984498754808792
- License:
- Abstract: This systematic review explores the use of machine learning (ML) in predicting diabetes, focusing on datasets, algorithms, training methods, and evaluation metrics. It examines datasets like the Singapore National Diabetic Retinopathy Screening program, REPLACE-BG, National Health and Nutrition Examination Survey, and Pima Indians Diabetes Database. The review assesses the performance of ML algorithms like CNN, SVM, Logistic Regression, and XGBoost in predicting diabetes outcomes. The study emphasizes the importance of interdisciplinary collaboration and ethical considerations in ML-based diabetes prediction models.
Related papers
- Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KARE is a novel framework that integrates knowledge graph (KG) community-level retrieval with large language models (LLMs) reasoning.
Extensive experiments demonstrate that KARE outperforms leading models by up to 10.8-15.0% on MIMIC-III and 12.6-12.7% on MIMIC-IV for mortality and readmission predictions.
arXiv Detail & Related papers (2024-10-06T18:46:28Z) - An adapted large language model facilitates multiple medical tasks in diabetes care [20.096444964141508]
Large language models (LLMs) have shown promise in various healthcare scenarios, but their effectiveness across a diverse range of diabetes tasks remains unproven.
This study introduced a framework to train and validate diabetes-specific LLMs.
arXiv Detail & Related papers (2024-09-20T03:47:54Z) - Evaluating the Fairness of the MIMIC-IV Dataset and a Baseline
Algorithm: Application to the ICU Length of Stay Prediction [65.268245109828]
This paper uses the MIMIC-IV dataset to examine the fairness and bias in an XGBoost binary classification model predicting the ICU length of stay.
The research reveals class imbalances in the dataset across demographic attributes and employs data preprocessing and feature extraction.
The paper concludes with recommendations for fairness-aware machine learning techniques for mitigating biases and the need for collaborative efforts among healthcare professionals and data scientists.
arXiv Detail & Related papers (2023-12-31T16:01:48Z) - DRAC: Diabetic Retinopathy Analysis Challenge with Ultra-Wide Optical
Coherence Tomography Angiography Images [51.27125547308154]
We organized a challenge named "DRAC - Diabetic Retinopathy Analysis Challenge" in conjunction with the 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2022)
The challenge consists of three tasks: segmentation of DR lesions, image quality assessment and DR grading.
This paper presents a summary and analysis of the top-performing solutions and results for each task of the challenge.
arXiv Detail & Related papers (2023-04-05T12:04:55Z) - Privacy-preserving machine learning for healthcare: open challenges and
future perspectives [72.43506759789861]
We conduct a review of recent literature concerning Privacy-Preserving Machine Learning (PPML) for healthcare.
We primarily focus on privacy-preserving training and inference-as-a-service.
The aim of this review is to guide the development of private and efficient ML models in healthcare.
arXiv Detail & Related papers (2023-03-27T19:20:51Z) - Machine Learning based prediction of Glucose Levels in Type 1 Diabetes
Patients with the use of Continuous Glucose Monitoring Data [0.0]
Continuous Glucose Monitoring (CGM) devices offer detailed, non-intrusive and real time insights into a patient's blood glucose concentrations.
Leveraging advanced Machine Learning (ML) Models as methods of prediction of future glucose levels, gives rise to substantial quality of life improvements.
arXiv Detail & Related papers (2023-02-24T19:10:40Z) - HealthEdge: A Machine Learning-Based Smart Healthcare Framework for
Prediction of Type 2 Diabetes in an Integrated IoT, Edge, and Cloud Computing
System [0.0]
The alarming increase in diabetes calls for the need to take precautionary measures to avoid/predict the occurrence of diabetes.
This paper proposes HealthEdge, a machine learning-based smart healthcare framework for type 2 diabetes prediction in an integrated IoT-edge-cloud computing system.
arXiv Detail & Related papers (2023-01-25T07:57:18Z) - Secure and Privacy-Preserving Automated Machine Learning Operations into
End-to-End Integrated IoT-Edge-Artificial Intelligence-Blockchain Monitoring
System for Diabetes Mellitus Prediction [0.5825410941577593]
This paper proposes an IoT-edge-Artificial Intelligence (AI)-blockchain system for diabetes prediction based on risk factors.
The proposed system is underpinned by the blockchain to obtain a cohesive view of the risk factors data from patients across different hospitals.
Numerical experiments and comparative analysis were carried out between our proposed system, using the most accurate random forest (RF) model.
arXiv Detail & Related papers (2022-11-13T13:57:14Z) - AI-based Data Preparation and Data Analytics in Healthcare: The Case of
Diabetes [10.307863191143635]
The Associazione Medici Diabetologi (AMD) collects and manages one of the largest worldwide-available collections of diabetic patient records, also known as the AMD database.
This paper presents the initial results of an ongoing project whose focus is the application of Artificial Intelligence and Machine Learning techniques for conceptualizing, cleaning, and analyzing such an important and valuable dataset.
arXiv Detail & Related papers (2022-06-13T14:13:15Z) - Unsupervised Pre-Training on Patient Population Graphs for Patient-Level
Predictions [48.02011627390706]
Pre-training has shown success in different areas of machine learning, such as Computer Vision (CV), Natural Language Processing (NLP) and medical imaging.
In this paper, we apply unsupervised pre-training to heterogeneous, multi-modal EHR data for patient outcome prediction.
We find that our proposed graph based pre-training method helps in modeling the data at a population level.
arXiv Detail & Related papers (2022-03-23T17:59:45Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
This study explores the use of Continuous Glucose Monitoring (CGM) data as input for digital decision support tools.
We investigate how Recurrent Neural Networks (RNNs) can be used for Short Term Blood Glucose (STBG) prediction.
arXiv Detail & Related papers (2020-02-06T16:39:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.