Diabetes Prediction and Management Using Machine Learning Approaches
- URL: http://arxiv.org/abs/2506.11501v1
- Date: Fri, 13 Jun 2025 06:58:19 GMT
- Title: Diabetes Prediction and Management Using Machine Learning Approaches
- Authors: Mowafaq Salem Alzboon, Muhyeeddin Alqaraleh, Mohammad Subhi Al-Batah,
- Abstract summary: This study highlights the prediction capabilities of statistical and non-statistical machine learning methods over Diabetes risk classification.<n>The experimentation assesses the various types of machine learning algorithms in terms of accuracy and effectiveness regarding diabetes prediction.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diabetes has emerged as a significant global health issue, especially with the increasing number of cases in many countries. This trend Underlines the need for a greater emphasis on early detection and proactive management to avert or mitigate the severe health complications of this disease. Over recent years, machine learning algorithms have shown promising potential in predicting diabetes risk and are beneficial for practitioners. Objective: This study highlights the prediction capabilities of statistical and non-statistical machine learning methods over Diabetes risk classification in 768 samples from the Pima Indians Diabetes Database. It consists of the significant demographic and clinical features of age, body mass index (BMI) and blood glucose levels that greatly depend on the vulnerability against Diabetes. The experimentation assesses the various types of machine learning algorithms in terms of accuracy and effectiveness regarding diabetes prediction. These algorithms include Logistic Regression, Decision Tree, Random Forest, K-Nearest Neighbors, Naive Bayes, Support Vector Machine, Gradient Boosting and Neural Network Models. The results show that the Neural Network algorithm gained the highest predictive accuracy with 78,57 %, and then the Random Forest algorithm had the second position with 76,30 % accuracy. These findings show that machine learning techniques are not just highly effective. Still, they also can potentially act as early screening tools in predicting Diabetes within a data-driven fashion with valuable information on who is more likely to get affected. In addition, this study can help to realize the potential of machine learning for timely intervention over the longer term, which is a step towards reducing health outcomes and disease burden attributable to Diabetes on healthcare systems
Related papers
- A Comparative Study of Machine Learning Techniques for Early Prediction of Diabetes [0.0]
This study attempts to evaluate the efficacy of several machine-learning methods for diabetes prediction.<n>The techniques assessed are Logistic Regression, Decision Tree, Random Forest, k-Nearest Neighbors, Naive Bayes, Support Vector Machine, Gradient Boosting, and Neural Network.<n>The findings indicate that the Neural Network algorithm performed the best, with an accuracy of 78.57 percent, followed by the Random Forest method, with an accuracy of 76.30 percent.
arXiv Detail & Related papers (2025-06-11T21:12:28Z) - Insulin Resistance Prediction From Wearables and Routine Blood Biomarkers [44.735350554750916]
We remotely recruited the largest dataset to date across the US to study insulin resistance.<n>Deep neural network models were developed to predict insulin resistance based on readily available digital and blood biomarkers.<n>Model showed 93% sensitivity and 95% adjusted specificity in obese and sedentary participants.
arXiv Detail & Related papers (2025-04-30T16:10:20Z) - From Glucose Patterns to Health Outcomes: A Generalizable Foundation Model for Continuous Glucose Monitor Data Analysis [47.23780364438969]
We present GluFormer, a generative foundation model for CGM data that learns nuanced glycemic patterns and translates them into predictive representations of metabolic health.<n>GluFormer generalizes to 19 external cohorts spanning different ethnicities and ages, 5 countries, 8 CGM devices, and diverse pathophysiological states.<n>In a longitudinal study of 580 adults with CGM data and 12-year follow-up, GluFormer identifies individuals at elevated risk of developing diabetes more effectively than blood HbA1C%.
arXiv Detail & Related papers (2024-08-20T13:19:06Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
Recent genome-wide association studies (GWAS) have uncovered the genetic basis of complex traits, but show an under-representation of non-European descent individuals.
Here, we assess whether we can improve disease prediction across diverse ancestries using multiomic data.
arXiv Detail & Related papers (2024-04-26T16:39:50Z) - DiabetesNet: A Deep Learning Approach to Diabetes Diagnosis [6.095029229301643]
Experimental results on three datasets show significant improvements in overall accuracy, sensitivity, and specificity compared to traditional methods.
This underscores the potential of deep learning models for robust diabetes diagnosis.
arXiv Detail & Related papers (2024-03-12T10:18:59Z) - Diabetes detection using deep learning techniques with oversampling and
feature augmentation [0.3749861135832073]
Diabetes is a chronic pathology which is affecting more and more people over the years.
It gives rise to a large number of deaths each year.
Many people living with the disease do not realize the seriousness of their health status early enough.
arXiv Detail & Related papers (2024-02-03T15:30:20Z) - Virchow: A Million-Slide Digital Pathology Foundation Model [34.38679208931425]
We present Virchow, a foundation model for computational pathology.
Virchow is a vision transformer model with 632 million parameters trained on 1.5 million hematoxylin and eosin stained whole slide images.
arXiv Detail & Related papers (2023-09-14T15:09:35Z) - Prognosis and Treatment Prediction of Type-2 Diabetes Using Deep Neural
Network and Machine Learning Classifiers [1.1470070927586016]
The motion of this research is a comparative study of seven machine learning classifiers and an artificial neural network method to prognosticate the detection and treatment of diabetes with high accuracy.
Our training and test dataset is an accumulation of 9483 diabetes patients information.
Our high-performing model can be used by hospitals to predict diabetes and drive research into more accurate prediction models.
arXiv Detail & Related papers (2023-01-08T19:10:20Z) - Hybrid stacked ensemble combined with genetic algorithms for Prediction
of Diabetes [0.0]
Diabetes is one of the most common, dangerous, and costly diseases in the world.
In this study, we use the experimental data, real data on Indian diabetics on the University of California website.
Results show the high performance of the proposed method in diagnosing the disease, which has reached 98.8%, and 99% accuracy in this study.
arXiv Detail & Related papers (2021-03-15T07:47:23Z) - RA-GCN: Graph Convolutional Network for Disease Prediction Problems with
Imbalanced Data [47.00510780034136]
Class imbalance is a familiar issue in the field of disease prediction.
In this paper, we propose Re-weighted Adversarial Graph Convolutional Network (RA-GCN) to enhance the performance of the graph-based classifier.
We show the superiority of RA-GCN on synthetic and three publicly available medical datasets compared to the recent method.
arXiv Detail & Related papers (2021-02-27T14:06:27Z) - Patient-independent Epileptic Seizure Prediction using Deep Learning
Models [39.19336481493405]
The purpose of a seizure prediction system is to successfully identify the pre-ictal brain stage, which occurs before a seizure event.
Patient-independent seizure prediction models are designed to offer accurate performance across multiple subjects within a dataset.
We propose two patient-independent deep learning architectures with different learning strategies that can learn a global function utilizing data from multiple subjects.
arXiv Detail & Related papers (2020-11-18T23:13:48Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
This study explores the use of Continuous Glucose Monitoring (CGM) data as input for digital decision support tools.
We investigate how Recurrent Neural Networks (RNNs) can be used for Short Term Blood Glucose (STBG) prediction.
arXiv Detail & Related papers (2020-02-06T16:39:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.