Quantum circuit synthesis with SQiSW
- URL: http://arxiv.org/abs/2412.14828v2
- Date: Tue, 24 Dec 2024 14:38:07 GMT
- Title: Quantum circuit synthesis with SQiSW
- Authors: Jialiang Tang, Jialin Zhang, Xiaoming Sun,
- Abstract summary: The SQiSW gate, also known as the square root of iSWAP gate, has garnered considerable attention due to its outstanding experimental performance.
We introduce an exact synthesis scheme for Toffoli gate using only 8 SQiSW gates, which is grounded in numerical observation.
- Score: 10.12389814746236
- License:
- Abstract: The main task of quantum circuit synthesis is to efficiently and accurately implement specific quantum algorithms or operations using a set of quantum gates, and optimize the circuit size. It plays a crucial role in Noisy Intermediate-Scale Quantum computation. Most prior synthesis efforts have employed CNOT or CZ gates as the 2-qubit gates. However, the SQiSW gate, also known as the square root of iSWAP gate, has garnered considerable attention due to its outstanding experimental performance with low error rates and high efficiency in 2-qubit gate synthesis. In this paper, we investigate the potential of the SQiSW gate in various synthesis problems by utilizing only the SQiSW gate along with arbitrary single-qubit gates, while optimizing the overall circuit size. For exact synthesis, the upper bound of SQiSW gates to synthesize arbitrary 3-qubit and $n$-qubit gates are 24 and $\frac{139}{192}4^n(1+o(1))$ respectively, which relies on the properties of SQiSW gate in Lie theory and quantum shannon decomposition. We also introduce an exact synthesis scheme for Toffoli gate using only 8 SQiSW gates, which is grounded in numerical observation. More generally, with respect to numerical approximations, we propose and provide a theoretical analysis of a pruning algorithm to reduce the size of the searching space in numerical experiment to $\frac{1}{12}+o(1)$ of previous size, helping us reach the result that 11 SQiSW gates are enough in arbitrary 3-qubit gates synthesis up to an acceptable numerical error.
Related papers
- Efficient compilation of quantum circuits using multi-qubit gates [0.0]
We present a compilation scheme which implements a general-circuit decomposition to a sequence of Ising-type, long-range, multi-qubit entangling gates.
We numerically test our compilation and show that, compared to conventional realizations with two-qubit gates, our compilations improves the logarithm of quantum volume by $20%$ to $25%$.
arXiv Detail & Related papers (2025-01-28T19:08:13Z) - Linear Circuit Synthesis using Weighted Steiner Trees [45.11082946405984]
CNOT circuits are a common building block of general quantum circuits.
This article presents state-of-the-art algorithms for optimizing the number of CNOT gates.
A simulated evaluation shows that the suggested is almost always beneficial and reduces the number of CNOT gates by up to 10%.
arXiv Detail & Related papers (2024-08-07T19:51:22Z) - Multi-controlled Phase Gate Synthesis with ZX-calculus applied to Neutral Atom Hardware [2.536162003546062]
We present an approach to synthesize multi controlled phase gates using ZX calculus.
By representing quantum circuits as graph like ZX diagrams, one can utilize the distinct graph structure of diagonal gates.
arXiv Detail & Related papers (2024-03-16T09:06:49Z) - One Gate Scheme to Rule Them All: Introducing a Complex Yet Reduced Instruction Set for Quantum Computing [8.478982715648547]
Scheme for qubits with $XX+YY$ coupling realizes any two-qubit gate up to single-qubit gates.
We observe marked improvements across various applications, including generic $n$-qubit gate synthesis, quantum volume, and qubit routing.
arXiv Detail & Related papers (2023-12-09T19:30:31Z) - Quantum circuit synthesis via a random combinatorial search [0.0]
We use a random search technique to find quantum gate sequences that implement perfect quantum state preparation or unitary operator synthesis with arbitrary targets.
We show that the fraction of perfect-fidelity quantum circuits increases rapidly as soon as the circuit size exceeds the minimum circuit size required for achieving unit fidelity.
arXiv Detail & Related papers (2023-11-29T00:59:29Z) - Universal qudit gate synthesis for transmons [44.22241766275732]
We design a superconducting qudit-based quantum processor.
We propose a universal gate set featuring a two-qudit cross-resonance entangling gate.
We numerically demonstrate the synthesis of $rm SU(16)$ gates for noisy quantum hardware.
arXiv Detail & Related papers (2022-12-08T18:59:53Z) - Numerical analysis of quantum circuits for state preparation and unitary
operator synthesis [0.8367938108534343]
We determine the minimum number of two-qubit CNOT gates needed to perform quantum state preparation and unitary operator synthesis for few-qubit systems.
We find that there are a large number of configurations that all produce the desired result, even at the minimum number of gates.
In addition to treating the general case of arbitrary target states or unitary operators, we apply the numerical approach to the special case of synthesizing the multi-qubit Toffoli gate.
arXiv Detail & Related papers (2022-04-28T14:20:21Z) - Software mitigation of coherent two-qubit gate errors [55.878249096379804]
Two-qubit gates are important components of quantum computing.
But unwanted interactions between qubits (so-called parasitic gates) can degrade the performance of quantum applications.
We present two software methods to mitigate parasitic two-qubit gate errors.
arXiv Detail & Related papers (2021-11-08T17:37:27Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUANTIFY is an open-source framework for the quantitative analysis of quantum circuits.
It is based on Google Cirq and is developed with Clifford+T circuits in mind.
For benchmarking purposes QUANTIFY includes quantum memory and quantum arithmetic circuits.
arXiv Detail & Related papers (2020-07-21T15:36:25Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.