論文の概要: Robust Federated Learning in the Face of Covariate Shift: A Magnitude Pruning with Hybrid Regularization Framework for Enhanced Model Aggregation
- arxiv url: http://arxiv.org/abs/2412.15010v1
- Date: Thu, 19 Dec 2024 16:22:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-20 13:32:45.910599
- Title: Robust Federated Learning in the Face of Covariate Shift: A Magnitude Pruning with Hybrid Regularization Framework for Enhanced Model Aggregation
- Title(参考訳): 共変量シフトに直面するロバストなフェデレーション学習--モデル集約強化のためのハイブリッド正規化フレームワークによるマグニチュード・プルーニング
- Authors: Ozgu Goksu, Nicolas Pugeault,
- Abstract要約: Federated Learning(FL)は、共有モデルの共同開発を目指す個人に対して、有望なフレームワークを提供する。
クライアント間のデータの分散の変化は、主に集約プロセスの不安定性によって、FL方法論に大きく影響します。
本稿では,個々のパラメータのプルーニングと正規化技術を組み合わせて,個々のクライアントモデルのロバスト性を向上する新しいFLフレームワークを提案する。
- 参考スコア(独自算出の注目度): 1.519321208145928
- License:
- Abstract: The development of highly sophisticated neural networks has allowed for fast progress in every field of computer vision, however, applications where annotated data is prohibited due to privacy or security concerns remain challenging. Federated Learning (FL) offers a promising framework for individuals aiming to collaboratively develop a shared model while preserving data privacy. Nevertheless, our findings reveal that variations in data distribution among clients can profoundly affect FL methodologies, primarily due to instabilities in the aggregation process. We also propose a novel FL framework to mitigate the adverse effects of covariate shifts among federated clients by combining individual parameter pruning and regularization techniques to improve the robustness of individual clients' models to aggregate. Each client's model is optimized through magnitude-based pruning and the addition of dropout and noise injection layers to build more resilient decision pathways in the networks and improve the robustness of the model's parameter aggregation step. The proposed framework is capable of extracting robust representations even in the presence of very large covariate shifts among client data distributions and in the federation of a small number of clients. Empirical findings substantiate the effectiveness of our proposed methodology across common benchmark datasets, including CIFAR10, MNIST, SVHN, and Fashion MNIST. Furthermore, we introduce the CelebA-Gender dataset, specifically designed to evaluate performance on a more realistic domain. The proposed method is capable of extracting robust representations even in the presence of both high and low covariate shifts among client data distributions.
- Abstract(参考訳): 高度に洗練されたニューラルネットワークの開発は、コンピュータビジョンのあらゆる分野において急速に進歩している。
Federated Learning(FL)は、データのプライバシを保持しながら、共有モデルの共同開発を目指す個人に対して、有望なフレームワークを提供する。
いずれにせよ, クライアント間のデータ分散の変化は, 集約プロセスの不安定性に起因するFL手法に大きく影響することが明らかとなった。
また,各パラメータのプルーニングと正規化技術を組み合わせて,各クライアントモデルが集約するロバスト性を改善することにより,フェデレートクライアント間の共変量シフトの悪影響を軽減する新しいFLフレームワークを提案する。
各クライアントのモデルは、マグニチュードベースのプルーニングと、ドロップアウト層とノイズ注入層の追加によって最適化され、ネットワーク内でより回復力のある決定経路を構築し、モデルのパラメータ集約ステップの堅牢性を改善する。
提案するフレームワークは,クライアントデータ分布に非常に大きな共変量シフトが存在する場合や,少数のクライアントのフェデレーションにおいても,ロバストな表現を抽出することができる。
CIFAR10、MNIST、SVHN、Fashion MNISTなど、一般的なベンチマークデータセットで提案手法の有効性を実証した。
さらに,より現実的なドメインの性能評価を目的としたCelebA-Genderデータセットについても紹介する。
提案手法は,クライアントデータ分布間の高次および低次共変量シフトが存在する場合でも,ロバストな表現を抽出することができる。
関連論文リスト
- FedRTS: Federated Robust Pruning via Combinatorial Thompson Sampling [12.067872131025231]
フェデレートラーニング(FL)は、データ共有なしで分散クライアント間で協調的なモデルトレーニングを可能にする。
現在の手法では、疎密性を維持しながらスパースモデルトポロジを周期的に調整することで、動的プルーニングを用いて効率を向上させる。
我々は,堅牢なスパースモデルの開発を目的とした新しいフレームワークであるThompson Sampling (FedRTS) によるフェデレートロバスト刈取を提案する。
論文 参考訳(メタデータ) (2025-01-31T13:26:22Z) - Client-Centric Federated Adaptive Optimization [78.30827455292827]
Federated Learning(FL)は、クライアントが独自のデータをプライベートに保ちながら、協調的にモデルをトレーニングする分散学習パラダイムである。
本稿では,新しいフェデレーション最適化手法のクラスであるフェデレーション中心適応最適化を提案する。
論文 参考訳(メタデータ) (2025-01-17T04:00:50Z) - FedDUAL: A Dual-Strategy with Adaptive Loss and Dynamic Aggregation for Mitigating Data Heterogeneity in Federated Learning [12.307490659840845]
フェデレートラーニング(FL)は、様々なクライアントからローカルに最適化されたモデルと、統一されたグローバルモデルを組み合わせる。
FLは、性能劣化、収束の遅さ、グローバルモデルの堅牢性低下など、重大な課題に直面している。
これらの問題を効果的に解決するために、革新的なデュアルストラテジーアプローチを導入する。
論文 参考訳(メタデータ) (2024-12-05T18:42:29Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - FLASH: Federated Learning Across Simultaneous Heterogeneities [54.80435317208111]
FLASH (Federated Learning Across Simultaneous Heterogeneities) は軽量かつ柔軟なクライアント選択アルゴリズムである。
ヘテロジニティの幅広い情報源の下で、最先端のFLフレームワークよりも優れています。
最先端のベースラインよりも大幅に、一貫性のある改善を実現している。
論文 参考訳(メタデータ) (2024-02-13T20:04:39Z) - PS-FedGAN: An Efficient Federated Learning Framework Based on Partially
Shared Generative Adversarial Networks For Data Privacy [56.347786940414935]
分散計算のための効果的な学習パラダイムとして、フェデレートラーニング(FL)が登場した。
本研究は,部分的なGANモデル共有のみを必要とする新しいFLフレームワークを提案する。
PS-FedGANと名付けられたこの新しいフレームワークは、異種データ分散に対処するためのGANリリースおよびトレーニングメカニズムを強化する。
論文 参考訳(メタデータ) (2023-05-19T05:39:40Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
本稿では,ガウス混合モデル(GMM)を用いたPFL(Personalized Federated Learning)を提案する。
FedGMMはオーバーヘッドを最小限に抑え、新しいクライアントに適応する付加的なアドバンテージを持ち、不確実な定量化を可能にします。
PFL分類と新しいサンプル検出の両方において, 合成データセットとベンチマークデータセットの実証評価により, 提案手法の優れた性能を示した。
論文 参考訳(メタデータ) (2023-05-01T20:04:46Z) - Adaptive Federated Learning via New Entropy Approach [14.595709494370372]
Federated Learning (FL) は、分散機械学習フレームワークとして注目されている。
本稿では,不均一クライアント間のパラメータ偏差を軽減するために,entropy理論(FedEnt)に基づく適応型FEDerated Learningアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-03-27T07:57:04Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
フェデレートラーニング(FL)は近年、学術や産業から注目を集めている。
我々は,複数の局所的代理関数からグローバルなトレーニング目標を構築するためのFedDMを提案する。
そこで本研究では,各クライアントにデータ集合を構築し,元のデータから得られた損失景観を局所的にマッチングする。
論文 参考訳(メタデータ) (2022-07-20T04:55:18Z) - Stochastic Coded Federated Learning with Convergence and Privacy
Guarantees [8.2189389638822]
フェデレートラーニング(FL)は、プライバシを保存する分散機械学習フレームワークとして多くの注目を集めている。
本稿では、トラグラー問題を緩和するために、SCFL(Coded Federated Learning)というコード付きフェデレーション学習フレームワークを提案する。
我々は、相互情報差分プライバシー(MI-DP)によるプライバシー保証を特徴付け、連合学習における収束性能を分析する。
論文 参考訳(メタデータ) (2022-01-25T04:43:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。