論文の概要: Sociodynamics-inspired Adaptive Coalition and Client Selection in Federated Learning
- arxiv url: http://arxiv.org/abs/2506.02897v1
- Date: Tue, 03 Jun 2025 14:04:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-04 21:47:35.778367
- Title: Sociodynamics-inspired Adaptive Coalition and Client Selection in Federated Learning
- Title(参考訳): フェデレートラーニングにおける社会力学による適応的協調とクライアント選択
- Authors: Alessandro Licciardi, Roberta Raineri, Anton Proskurnikov, Lamberto Rondoni, Lorenzo Zino,
- Abstract要約: 本稿では,時間的ソーシャルネットワーク上での意見ダイナミクスに着想を得た分散推論アルゴリズムであるショートネーム(Federated Coalition Variance Reduction with Boltzmann Exploration)を紹介する。
実験により、不均一なシナリオでは、我々のアルゴリズムは既存のFLアルゴリズムより優れており、より正確な結果とより高速な収束が得られることが示された。
- 参考スコア(独自算出の注目度): 39.58317527488534
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Federated Learning (FL) enables privacy-preserving collaborative model training, yet its practical strength is often undermined by client data heterogeneity, which severely degrades model performance. This paper proposes that data heterogeneity across clients' distributions can be effectively addressed by adopting an approach inspired by opinion dynamics over temporal social networks. We introduce \shortname (Federated Coalition Variance Reduction with Boltzmann Exploration), a variance-reducing selection algorithm in which (1) clients dynamically organize into non-overlapping clusters based on asymptotic agreements, and (2) from each cluster, one client is selected to minimize the expected variance of its model update. Our experiments show that in heterogeneous scenarios our algorithm outperforms existing FL algorithms, yielding more accurate results and faster convergence, validating the efficacy of our approach.
- Abstract(参考訳): フェデレートラーニング(FL)は、プライバシを保存する協調モデルトレーニングを可能にするが、その実用的強みはクライアントデータの不均一性によって損なわれ、モデルのパフォーマンスが著しく低下する。
本稿では、時間的ソーシャルネットワーク上での意見ダイナミクスにインスパイアされたアプローチを採用することにより、クライアントの分布間のデータ不均一性を効果的に解決できることを示す。
本稿では,(1) クライアントが漸近的合意に基づいて非重複クラスタに動的に整理し,(2) クラスタ毎に1つのクライアントを選択し,モデル更新の予測分散を最小限に抑える分散緩和アルゴリズムである「ショートネーム(Federated Coalition Variance Reduction with Boltzmann Exploration)」を紹介する。
実験により、不均一なシナリオにおいて、我々のアルゴリズムは既存のFLアルゴリズムより優れており、より正確な結果とより高速な収束が得られ、我々のアプローチの有効性が検証された。
関連論文リスト
- Interaction-Aware Gaussian Weighting for Clustered Federated Learning [58.92159838586751]
フェデレートラーニング(FL)は、プライバシを維持しながらモデルをトレーニングするための分散パラダイムとして登場した。
本稿では,新たなクラスタリングFL法であるFedGWC(Federated Gaussian Weighting Clustering)を提案する。
ベンチマークデータセットを用いた実験により,FedGWCはクラスタの品質と分類精度において,既存のFLアルゴリズムよりも優れていることがわかった。
論文 参考訳(メタデータ) (2025-02-05T16:33:36Z) - Client-Centric Federated Adaptive Optimization [78.30827455292827]
Federated Learning(FL)は、クライアントが独自のデータをプライベートに保ちながら、協調的にモデルをトレーニングする分散学習パラダイムである。
本稿では,新しいフェデレーション最適化手法のクラスであるフェデレーション中心適応最適化を提案する。
論文 参考訳(メタデータ) (2025-01-17T04:00:50Z) - Robust Federated Learning in the Face of Covariate Shift: A Magnitude Pruning with Hybrid Regularization Framework for Enhanced Model Aggregation [1.519321208145928]
Federated Learning(FL)は、共有モデルの共同開発を目指す個人に対して、有望なフレームワークを提供する。
クライアント間のデータの分散の変化は、主に集約プロセスの不安定性によって、FL方法論に大きく影響します。
本稿では,個々のパラメータのプルーニングと正規化技術を組み合わせて,個々のクライアントモデルのロバスト性を向上する新しいFLフレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-19T16:22:37Z) - FedDUAL: A Dual-Strategy with Adaptive Loss and Dynamic Aggregation for Mitigating Data Heterogeneity in Federated Learning [12.307490659840845]
フェデレートラーニング(FL)は、様々なクライアントからローカルに最適化されたモデルと、統一されたグローバルモデルを組み合わせる。
FLは、性能劣化、収束の遅さ、グローバルモデルの堅牢性低下など、重大な課題に直面している。
これらの問題を効果的に解決するために、革新的なデュアルストラテジーアプローチを導入する。
論文 参考訳(メタデータ) (2024-12-05T18:42:29Z) - Provably Personalized and Robust Federated Learning [47.50663360022456]
類似したクライアントのクラスタを識別し、パーソナライズされたモデルパークラスタを訓練する簡単なアルゴリズムを提案する。
アルゴリズムの収束率は、クライアントの真の基盤となるクラスタリングを知っていれば得られるものと一致します。
論文 参考訳(メタデータ) (2023-06-14T09:37:39Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
本稿では,ガウス混合モデル(GMM)を用いたPFL(Personalized Federated Learning)を提案する。
FedGMMはオーバーヘッドを最小限に抑え、新しいクライアントに適応する付加的なアドバンテージを持ち、不確実な定量化を可能にします。
PFL分類と新しいサンプル検出の両方において, 合成データセットとベンチマークデータセットの実証評価により, 提案手法の優れた性能を示した。
論文 参考訳(メタデータ) (2023-05-01T20:04:46Z) - Adaptive Federated Learning via New Entropy Approach [14.595709494370372]
Federated Learning (FL) は、分散機械学習フレームワークとして注目されている。
本稿では,不均一クライアント間のパラメータ偏差を軽減するために,entropy理論(FedEnt)に基づく適応型FEDerated Learningアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-03-27T07:57:04Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
フェデレーション学習は、プライバシと通信の制限を尊重しながら、クライアントの大規模なネットワークに分散されたサンプルからのトレーニングモデルを可能にする。
これら2つのハードルを同時に処理する理論的なスピードアップを保証する新しいアルゴリズム手法を開発した。
提案手法は,すべてのクライアントのデータを用いてグローバルな共通表現を見つけ,各クライアントに対してパーソナライズされたソリューションにつながるパラメータの集合を学習するために,表現学習理論からのアイデアに依存している。
論文 参考訳(メタデータ) (2022-06-05T01:14:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。