Reservoir engineering to protect quantum coherence in tripartite systems under dephasing noise
- URL: http://arxiv.org/abs/2412.15082v1
- Date: Thu, 19 Dec 2024 17:28:32 GMT
- Title: Reservoir engineering to protect quantum coherence in tripartite systems under dephasing noise
- Authors: Sovik Roy, Aahaman Kalaiselvan, Chandrashekar Radhakrishnan, Md Manirul Ali,
- Abstract summary: Dephasing destroys the coherence of quantum states, leading to a loss of quantum information.
In a Markov, memoryless environment, coherence in both pure and mixed states decays, whereas coherence is preserved in the presence of reservoir memory.
- Score: 0.0
- License:
- Abstract: In the era of quantum 2.0, a key technological challenge lies in preserving coherence within quantum systems. Quantum coherence is susceptible to decoherence because of the interactions with the environment. Dephasing is a process that destroys the coherence of quantum states, leading to a loss of quantum information. In this work, we explore the dynamics of the relative entropy of coherence for tripartite pure and mixed states in the presence of structured dephasing environments at finite temperatures. Our findings demonstrate that the system's resilience to decoherence depends on the bath configuration. Specifically, when each qubit interacts with an independent environment, the dynamics differ from those observed with a shared bath. In a Markov, memoryless environment, coherence in both pure and mixed states decays, whereas coherence is preserved in the presence of reservoir memory.
Related papers
- Dynamics of Quantum Coherence and Non-Classical Correlations in Open Quantum System Coupled to a Squeezed Thermal Bath [0.0]
We investigate the dynamics of quantum coherence and non-classical correlations in a two-qubit open quantum system coupled to a squeezed thermal reservoir.
Our findings demonstrate that non-classical correlations such as quantum consonance, quantum discord, local quantum uncertainty, and quantum Fisher information are highly sensitive to the collective regime.
This work bridges theoretical advancements with real-world applications, offering a comprehensive framework for leveraging quantum resources under the influence of environmental decoherence.
arXiv Detail & Related papers (2024-12-19T14:46:09Z) - Dephasing-Induced Distribution of Entanglement in Tripartite Quantum Systems [0.0]
Reservoir memory offers a means to attenuate the decoherence dynamics impacting multipartite entanglement.
We show that the robustness of a quantum system to decoherence depends on the distribution of entanglement.
arXiv Detail & Related papers (2024-08-19T08:46:37Z) - Suppression of quantum dissipation: A cooperative effect of quantum squeezing and quantum measurement [22.051290654737976]
We propose a scheme for beating environment-induced dissipation in an open two-level system coupled to a parametrically driven cavity.
We demonstrate that, in the presence of the cooperation, the system dynamics can be completely dominated by the effective system-cavity interaction.
This work provides a generic method of dissipation suppression in a variety of quantum mechanical platforms, including natural atoms and superconducting circuits.
arXiv Detail & Related papers (2024-07-12T15:10:44Z) - Entanglement preservation in tripartite quantum systems under dephasing
dynamics [0.0]
We investigate the tripartite entanglement dynamics of pure and mixed states in the presence of a structured dephasing environment at finite temperature.
We show that the robustness of the quantum system to decoherence is dependent on the distribution of entanglement.
The sustainability of tripartite entanglement is shown to be enhanced significantly in presence of reservoir memory.
arXiv Detail & Related papers (2023-11-09T06:19:08Z) - Open quantum system in the indefinite environment [13.979213066536394]
In this paper, we investigate the interference engineering of the open quantum system.
The environment is made indefinite either through the use of an interferometer or the introduction of auxiliary qubits.
arXiv Detail & Related papers (2023-07-13T07:52:48Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Discord and Decoherence [0.0]
We investigate how quantum discord is modified by a quantum-to-classical transition.
We find that the evolution of quantum discord in presence of an environment is a competition between the growth of the squeezing amplitude and the decrease of the state purity.
arXiv Detail & Related papers (2021-12-09T17:01:54Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Experimental study of decoherence of the two-mode squeezed vacuum state
via second harmonic generation [19.5474623165562]
We report a novel scheme on the study of decoherence of a two-mode squeezed vacuum state via its second harmonic generation signal.
Our scheme can directly extract the decoherence of the phase-sensitive quantum correlation $langle hatahatbrangle$ between two entangled modes.
This is an experimental study on the decoherence effect of a squeezed vacuum state, which has been rarely investigated.
arXiv Detail & Related papers (2020-12-22T05:38:24Z) - Multidimensional dark space and its underlying symmetries: towards
dissipation-protected qubits [62.997667081978825]
We show that a controlled interaction with the environment may help to create a state, dubbed as em dark'', which is immune to decoherence.
To encode quantum information in the dark states, they need to span a space with a dimensionality larger than one, so different states act as a computational basis.
This approach offers new possibilities for storing, protecting and manipulating quantum information in open systems.
arXiv Detail & Related papers (2020-02-01T15:57:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.