論文の概要: A Full Transformer-based Framework for Automatic Pain Estimation using Videos
- arxiv url: http://arxiv.org/abs/2412.15095v1
- Date: Thu, 19 Dec 2024 17:45:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-20 13:33:40.281163
- Title: A Full Transformer-based Framework for Automatic Pain Estimation using Videos
- Title(参考訳): ビデオによる痛み自動推定のためのフルトランスフォーマーベースフレームワーク
- Authors: Stefanos Gkikas, Manolis Tsiknakis,
- Abstract要約: 本稿では,トランスフォーマーモデル(TNT)と,クロスアテンションブロックと自己アテンションブロックを利用するトランスフォーマーで構成される,新しいフルトランスフォーマーベースのフレームワークを提案する。
本研究は、すべての主痛推定タスクにおける有効性、効率、一般化能力を示す、最先端のパフォーマンスを示す。
- 参考スコア(独自算出の注目度): 0.9668407688201359
- License:
- Abstract: The automatic estimation of pain is essential in designing an optimal pain management system offering reliable assessment and reducing the suffering of patients. In this study, we present a novel full transformer-based framework consisting of a Transformer in Transformer (TNT) model and a Transformer leveraging cross-attention and self-attention blocks. Elaborating on videos from the BioVid database, we demonstrate state-of-the-art performances, showing the efficacy, efficiency, and generalization capability across all the primary pain estimation tasks.
- Abstract(参考訳): 痛みの自動評価は、患者の痛みを確実に評価し軽減する最適な痛み管理システムを設計する上で不可欠である。
本研究では,トランスフォーマーモデル(TNT)と,クロスアテンションブロックと自己アテンションブロックを利用するトランスフォーマーで構成される,新しいフルトランスフォーマーベースのフレームワークを提案する。
そこで,BioVidデータベースからの映像を実験し,すべての主痛推定タスクに対して有効性,効率性,一般化性を示す。
関連論文リスト
- Transformer with Leveraged Masked Autoencoder for video-based Pain Assessment [11.016004057765185]
我々は、トランスフォーマーに基づくディープラーニングモデルにおいて、顔画像解析を用いて、痛み認識を強化する。
強力なMasked AutoencoderとTransformersベースの分類器を組み合わせることで,表現とマイクロ表現の両方を通じて痛みレベルインジケータを効果的にキャプチャする。
論文 参考訳(メタデータ) (2024-09-08T13:14:03Z) - Synthetic Thermal and RGB Videos for Automatic Pain Assessment utilizing a Vision-MLP Architecture [0.9668407688201359]
本研究は、認知パイプラインに組み込まれたジェネレーティブ・アドバイサル・ネットワークによって生成された合成熱ビデオについて述べる。
Vision-MLPとTransformerベースのモジュールからなるフレームワークを使用し、RGBおよび合成熱ビデオを用いて、単調およびマルチモーダルな設定を行う。
論文 参考訳(メタデータ) (2024-07-29T09:04:11Z) - D-STGCNT: A Dense Spatio-Temporal Graph Conv-GRU Network based on
transformer for assessment of patient physical rehabilitation [0.3626013617212666]
本稿では,リハビリテーション演習を評価するための新しいグラフベースモデルを提案する。
デンス接続とGRU機構は、大きな3Dスケルトン入力を迅速に処理するために使用される。
KIMOREおよびUI-PRMDデータセットに対する提案手法の評価は,その可能性を強調した。
論文 参考訳(メタデータ) (2023-12-21T00:38:31Z) - Hourglass Tokenizer for Efficient Transformer-Based 3D Human Pose Estimation [73.31524865643709]
本稿では,Hourglass Tokenizer (HoT) と呼ばれるプラグアンドプレイのプルーニング・アンド・リカバリフレームワークを提案する。
私たちのHoDTは、冗長なフレームのポーズトークンのプルーニングから始まり、フル長のトークンを復元することで終了します。
提案手法は,従来のVPTモデルと比較して高い効率性と推定精度を両立させることができる。
論文 参考訳(メタデータ) (2023-11-20T18:59:51Z) - DA-TransUNet: Integrating Spatial and Channel Dual Attention with
Transformer U-Net for Medical Image Segmentation [5.5582646801199225]
本研究では,DA-TransUNetと呼ばれる新しい深層画像分割フレームワークを提案する。
トランスフォーマーとデュアルアテンションブロック(DA-Block)を従来のU字型アーキテクチャに統合することを目的としている。
以前のトランスフォーマーベースのU-netモデルとは異なり、DA-TransUNetはトランスフォーマーとDA-Blockを使用してグローバルな特徴とローカルな特徴だけでなく、画像固有の位置とチャネルの特徴を統合する。
論文 参考訳(メタデータ) (2023-10-19T08:25:03Z) - A Transformer-based representation-learning model with unified
processing of multimodal input for clinical diagnostics [63.106382317917344]
本稿では,マルチモーダル入力を統一的に処理する臨床診断支援として,トランスフォーマーを用いた表現学習モデルについて報告する。
統一モデルは, 肺疾患の同定において, 画像のみのモデル, 非統一型マルチモーダル診断モデルより優れていた。
論文 参考訳(メタデータ) (2023-06-01T16:23:47Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
本稿では,ニューラルネットワークを一般化し,トランスフォーマーアーキテクチャを用いて獲得関数を学習する,エンド・ツー・エンドの差別化可能な最初のメタBOフレームワークを提案する。
我々は、この強化学習(RL)によるエンドツーエンドのフレームワークを、ラベル付き取得データの欠如に対処できるようにします。
論文 参考訳(メタデータ) (2023-05-25T10:58:46Z) - Transformer Lesion Tracker [12.066026343488453]
我々はTransformer Lesion Tracker(TLT)と呼ばれるトランスフォーマーベースのアプローチを提案する。
我々はCAT(Cross Attention-based Transformer)を設計し、グローバル情報とローカル情報の両方を取り込み、特徴抽出を強化する。
我々は,提案手法の優位性を示すために,公開データセット上で実験を行い,モデルの性能が平均ユークリッド中心誤差を少なくとも14.3%改善したことを確認した。
論文 参考訳(メタデータ) (2022-06-13T15:35:24Z) - Can Transformers be Strong Treatment Effect Estimators? [86.32484218657166]
本研究では,様々な処理効果推定問題に対処するために,Transformerアーキテクチャに基づく汎用フレームワークを開発する。
本手法は, 離散的, 連続的, 構造的, あるいは服用関連治療に応用される。
Transformers as Treatment Effect Estimator (TransTEE) を用いて行った実験は、これらの誘導バイアスが因果効果を推定する研究で発生する推定問題やデータセットの種類にも有効であることを示した。
論文 参考訳(メタデータ) (2022-02-02T23:56:42Z) - Transformers in Medical Imaging: A Survey [88.03790310594533]
トランスフォーマーはいくつかのコンピュータビジョン問題に適用され、最先端の結果が得られた。
医療画像はまた、局所受容野を持つCNNと比較して、グローバルな文脈を捉えられるトランスフォーマーへの関心が高まっている。
本稿では,最近提案された建築設計から未解決問題に至るまで,医療画像におけるトランスフォーマーの応用について概説する。
論文 参考訳(メタデータ) (2022-01-24T18:50:18Z) - Efficient pre-training objectives for Transformers [84.64393460397471]
本研究はトランスフォーマーモデルにおける高効率事前学習目標について検討する。
マスクトークンの除去と損失時のアウトプット全体の考慮が,パフォーマンス向上に不可欠な選択であることを証明する。
論文 参考訳(メタデータ) (2021-04-20T00:09:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。