Capturing the Page Curve and Entanglement Dynamics of Black Holes in Quantum Computers
- URL: http://arxiv.org/abs/2412.15180v1
- Date: Thu, 19 Dec 2024 18:53:05 GMT
- Title: Capturing the Page Curve and Entanglement Dynamics of Black Holes in Quantum Computers
- Authors: Talal Ahmed Chowdhury, Kwangmin Yu, Muhammad Asaduzzaman, Raza Sabbir Sufian,
- Abstract summary: We utilize quantum computers to investigate the entropy of Hawking radiation using the qubit transport model.
We implement the quantum simulation of the scrambling dynamics in black holes using an efficient random unitary circuit.
Our findings indicate that while both entanglement entropy measurement protocols accurately estimate the R'enyi entropy in numerical simulation, the randomized measurement protocol has a particular advantage over the swap-based many-body interference protocol in IBM's superconducting quantum computers.
- Score: 0.9499648210774586
- License:
- Abstract: Understanding the Page curve and resolving the black hole information puzzle in terms of the entanglement dynamics of black holes has been a key question in fundamental physics. In principle, the current quantum computing can provide insights into the entanglement dynamics of black holes within some simplified models. In this regard, we utilize quantum computers to investigate the entropy of Hawking radiation using the qubit transport model, a toy qubit model of black hole evaporation. Specifically, we implement the quantum simulation of the scrambling dynamics in black holes using an efficient random unitary circuit. Furthermore, we employ the swap-based many-body interference protocol for the first time and the randomized measurement protocol to measure the entanglement entropy of Hawking radiation qubits in IBM's superconducting quantum computers. Our findings indicate that while both entanglement entropy measurement protocols accurately estimate the R\'enyi entropy in numerical simulation, the randomized measurement protocol has a particular advantage over the swap-based many-body interference protocol in IBM's superconducting quantum computers. Finally, by incorporating quantum error mitigation techniques, we establish that the current quantum computers are robust tools for measuring the entanglement entropy of complex quantum systems and can probe black hole dynamics within simplified toy qubit models.
Related papers
- A quantum computing concept for 1-D elastic wave simulation with exponential speedup [0.0]
We present a quantum computing concept for 1-D elastic wave propagation in heterogeneous media.
The method rests on a finite-difference approximation, followed by a sparsity-preserving transformation of the discrete elastic wave equation to a Schr"odinger equation.
An implementation on an error-free quantum simulator verifies our approach and forms the basis of numerical experiments.
arXiv Detail & Related papers (2023-12-22T14:58:01Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Scalable Simulation of Quantum Measurement Process with Quantum
Computers [13.14263204660076]
We propose qubit models to emulate the quantum measurement process.
One model is motivated by single-photon detection and the other by spin measurement.
We generate Schr"odinger cat-like state, and their corresponding quantum circuits are shown explicitly.
arXiv Detail & Related papers (2022-06-28T14:21:43Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Characterizing quantum instruments: from non-demolition measurements to
quantum error correction [48.43720700248091]
In quantum information processing quantum operations are often processed alongside measurements which result in classical data.
Non-unitary dynamical processes can take place on the system, for which common quantum channel descriptions fail to describe the time evolution.
Quantum measurements are correctly treated by means of so-called quantum instruments capturing both classical outputs and post-measurement quantum states.
arXiv Detail & Related papers (2021-10-13T18:00:13Z) - Quantum Computing for Inflationary, Dark Energy and Dark Matter
Cosmology [1.1706540832106251]
Quantum computing is an emerging new method of computing which excels in simulating quantum systems.
We show how to apply the Variational Quantum Eigensolver (VQE) and Evolution of Hamiltonian (EOH) algorithms to solve the Wheeler-DeWitt equation.
We find excellent agreement with classical computing results and describe the accuracy of the different quantum algorithms.
arXiv Detail & Related papers (2021-05-28T14:04:11Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum simulation of open quantum systems in heavy-ion collisions [0.0]
We present a framework to simulate the dynamics of hard probes such as heavy quarks or jets in a hot, strongly-coupled quark-gluon plasma (QGP) on a quantum computer.
Our work demonstrates the feasibility of simulating open quantum systems on current and near-term quantum devices.
arXiv Detail & Related papers (2020-10-07T18:00:02Z) - Light-Front Field Theory on Current Quantum Computers [0.06524460254566902]
We present a quantum algorithm for simulation of quantum field theory in the light-front formulation.
We demonstrate how existing quantum devices can be used to study the structure of bound states in relativistic nuclear physics.
arXiv Detail & Related papers (2020-09-16T18:32:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.