論文の概要: Face the Facts! Evaluating RAG-based Fact-checking Pipelines in Realistic Settings
- arxiv url: http://arxiv.org/abs/2412.15189v1
- Date: Thu, 19 Dec 2024 18:57:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-20 13:33:48.747399
- Title: Face the Facts! Evaluating RAG-based Fact-checking Pipelines in Realistic Settings
- Title(参考訳): RAGに基づくFact-checking Pipelinesを現実的な設定で評価する
- Authors: Daniel Russo, Stefano Menini, Jacopo Staiano, Marco Guerini,
- Abstract要約: この作業は、Retrieval-Augmented Generationパラダイムに基づいた自動ファクトチェックのための現在の最先端パイプラインのいくつかの制約を取り上げる。
我々のゴールは、より現実的なシナリオの下で、予測の生成のためのRAGベースのメソッドをベンチマークすることです。
- 参考スコア(独自算出の注目度): 14.355271969637139
- License:
- Abstract: Natural Language Processing and Generation systems have recently shown the potential to complement and streamline the costly and time-consuming job of professional fact-checkers. In this work, we lift several constraints of current state-of-the-art pipelines for automated fact-checking based on the Retrieval-Augmented Generation (RAG) paradigm. Our goal is to benchmark, under more realistic scenarios, RAG-based methods for the generation of verdicts - i.e., short texts discussing the veracity of a claim - evaluating them on stylistically complex claims and heterogeneous, yet reliable, knowledge bases. Our findings show a complex landscape, where, for example, LLM-based retrievers outperform other retrieval techniques, though they still struggle with heterogeneous knowledge bases; larger models excel in verdict faithfulness, while smaller models provide better context adherence, with human evaluations favouring zero-shot and one-shot approaches for informativeness, and fine-tuned models for emotional alignment.
- Abstract(参考訳): 自然言語処理と生成システムは最近、プロのファクトチェッカーのコストと時間を要する仕事の補完と合理化の可能性を示している。
本研究では,Retrieval-Augmented Generation(RAG)パラダイムに基づくファクトチェックの自動化のために,現在の最先端パイプラインの制約を取り上げる。
我々のゴールは、より現実的なシナリオの下で、RAGベースの検証手法、すなわちクレームの正確性について議論する短いテキストを、スタイリスティックに複雑なクレームと不均一で信頼性のある知識ベースで評価することである。
以上の結果から,LLMをベースとした検索者は,不均一な知識ベースに苦しむ一方で,より大型のモデルでは信頼性が優れ,より小型のモデルでは文脈順守性が向上し,人間の評価ではゼロショットとワンショットのアプローチが好まれ,感情的アライメントのための微調整モデルが好まれる。
関連論文リスト
- VERA: Validation and Enhancement for Retrieval Augmented systems [0.0]
textbfValidation and textbfEnhancement for textbfRetrieval textbfAugmented system を提案する。
VERAは、外部検索が必要なかどうかを最初にチェックし、検索したコンテキストの関連性と冗長性を評価し、非必要情報の除去のために精査する評価器-既存のLCMを使用している。
論文 参考訳(メタデータ) (2024-09-18T16:10:47Z) - P-RAG: Progressive Retrieval Augmented Generation For Planning on Embodied Everyday Task [94.08478298711789]
Embodied Everyday Taskは、インボディードAIコミュニティで人気のあるタスクである。
自然言語命令は明示的なタスクプランニングを欠くことが多い。
タスク環境に関する知識をモデルに組み込むには、広範囲なトレーニングが必要である。
論文 参考訳(メタデータ) (2024-09-17T15:29:34Z) - SFR-RAG: Towards Contextually Faithful LLMs [57.666165819196486]
Retrieval Augmented Generation (RAG) は、外部コンテキスト情報を大言語モデル(LLM)と統合し、事実の精度と妥当性を高めるパラダイムである。
SFR-RAG(SFR-RAG)について述べる。
また、複数の人気かつ多様なRAGベンチマークをコンパイルする新しい評価フレームワークであるConBenchについても紹介する。
論文 参考訳(メタデータ) (2024-09-16T01:08:18Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [69.4501863547618]
本稿では,様々なシナリオにまたがってRAGシステムを評価するためのフレームワークであるRAGvalを紹介する。
事実の正確性に着目し, 完全性, 幻覚, 不適切性の3つの新しい指標を提案する。
実験結果から, RAGEvalは, 生成した試料の明瞭度, 安全性, 適合性, 豊かさにおいて, ゼロショット法とワンショット法より優れていた。
論文 参考訳(メタデータ) (2024-08-02T13:35:11Z) - Evaluation of Retrieval-Augmented Generation: A Survey [13.633909177683462]
本稿では,Retrieval-Augmented Generation (RAG)システムの評価とベンチマークについて概観する。
具体的には、検索・生成要素の定量化指標(関連性、正確性、忠実性など)について検討・比較する。
次に、様々なデータセットとメトリクスを分析し、現在のベンチマークの限界について議論し、RAGベンチマークの分野を前進させる潜在的な方向性を提案する。
論文 参考訳(メタデータ) (2024-05-13T02:33:25Z) - Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection [74.51523859064802]
我々は、自己回帰検索拡張生成(Self-RAG)と呼ばれる新しいフレームワークを導入する。
自己RAGは、検索と自己回帰によってLMの品質と事実性を高める。
様々なタスクセットにおいて、最先端のLCMや検索強化モデルよりも大幅に優れています。
論文 参考訳(メタデータ) (2023-10-17T18:18:32Z) - Generative Judge for Evaluating Alignment [84.09815387884753]
本稿では,これらの課題に対処するために,13Bパラメータを持つ生成判断器Auto-Jを提案する。
我々のモデルは,大規模な実環境シナリオ下でのユーザクエリとLLM生成応答に基づいて訓練されている。
実験的に、Auto-Jはオープンソースモデルとクローズドソースモデルの両方を含む、強力なライバルのシリーズを上回っている。
論文 参考訳(メタデータ) (2023-10-09T07:27:15Z) - RAGAS: Automated Evaluation of Retrieval Augmented Generation [25.402461447140823]
RAGAはRetrieval Augmented Generationパイプラインを評価するためのフレームワークである。
RAGシステムは、検索とLLMベースの生成モジュールで構成される。
論文 参考訳(メタデータ) (2023-09-26T19:23:54Z) - Entailment Tree Explanations via Iterative Retrieval-Generation Reasoner [56.08919422452905]
我々はIRGR(Iterative Retrieval-Generation Reasoner)と呼ばれるアーキテクチャを提案する。
本モデルでは,テキストの前提からステップバイステップの説明を体系的に生成することにより,与えられた仮説を説明することができる。
前提条件の検索と細分化木の生成に関する既存のベンチマークを上回り、全体の正しさはおよそ300%向上した。
論文 参考訳(メタデータ) (2022-05-18T21:52:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。