LiHi-GS: LiDAR-Supervised Gaussian Splatting for Highway Driving Scene Reconstruction
- URL: http://arxiv.org/abs/2412.15447v2
- Date: Thu, 26 Dec 2024 16:37:43 GMT
- Title: LiHi-GS: LiDAR-Supervised Gaussian Splatting for Highway Driving Scene Reconstruction
- Authors: Pou-Chun Kung, Xianling Zhang, Katherine A. Skinner, Nikita Jaipuria,
- Abstract summary: Gaussian Splatting (GS) facilitates real-time, rendering with an explicit 3D Gaussian representation of the scene.
GS provides faster processing and more intuitive scene editing than the implicit Neural Radiance Fields (NeRFs)
We propose a novel GS method for dynamic scene synthesis and editing with improved scene reconstruction through LiDAR supervision and support for LiDAR rendering.
- Score: 6.428928591765432
- License:
- Abstract: Photorealistic 3D scene reconstruction plays an important role in autonomous driving, enabling the generation of novel data from existing datasets to simulate safety-critical scenarios and expand training data without additional acquisition costs. Gaussian Splatting (GS) facilitates real-time, photorealistic rendering with an explicit 3D Gaussian representation of the scene, providing faster processing and more intuitive scene editing than the implicit Neural Radiance Fields (NeRFs). While extensive GS research has yielded promising advancements in autonomous driving applications, they overlook two critical aspects: First, existing methods mainly focus on low-speed and feature-rich urban scenes and ignore the fact that highway scenarios play a significant role in autonomous driving. Second, while LiDARs are commonplace in autonomous driving platforms, existing methods learn primarily from images and use LiDAR only for initial estimates or without precise sensor modeling, thus missing out on leveraging the rich depth information LiDAR offers and limiting the ability to synthesize LiDAR data. In this paper, we propose a novel GS method for dynamic scene synthesis and editing with improved scene reconstruction through LiDAR supervision and support for LiDAR rendering. Unlike prior works that are tested mostly on urban datasets, to the best of our knowledge, we are the first to focus on the more challenging and highly relevant highway scenes for autonomous driving, with sparse sensor views and monotone backgrounds. Visit our project page at: https://umautobots.github.io/lihi_gs
Related papers
- OG-Gaussian: Occupancy Based Street Gaussians for Autonomous Driving [12.47557991785691]
We propose OG-Gaussian, a novel approach that replaces LiDAR point clouds with Occupancy Grids (OGs) generated from surround-view camera images.
Our method leverages the semantic information in OGs to separate dynamic vehicles from static street background, converting these grids into two distinct sets of initial point clouds for reconstructing both static and dynamic objects.
Experiments on the Open dataset demonstrate that OG-Gaussian is on par with the current state-of-the-art in terms of reconstruction quality and rendering speed, achieving an average PSNR of 35.13 and a rendering speed of 143 FPS
arXiv Detail & Related papers (2025-02-20T04:00:47Z) - GS-LiDAR: Generating Realistic LiDAR Point Clouds with Panoramic Gaussian Splatting [3.376357029373187]
GS-LiDAR is a novel framework for generating realistic LiDAR point clouds with panoramic Gaussian splatting.
We introduce a novel panoramic rendering technique with explicit ray-splat intersection, guided by panoramic LiDAR supervision.
arXiv Detail & Related papers (2025-01-22T11:21:20Z) - LiDAR-RT: Gaussian-based Ray Tracing for Dynamic LiDAR Re-simulation [31.79143254487969]
LiDAR-RT is a novel framework that supports real-time, physically accurate LiDAR re-simulation for driving scenes.
Our primary contribution is the development of an efficient and effective rendering pipeline.
Our framework supports realistic rendering with flexible scene editing operations and various sensor configurations.
arXiv Detail & Related papers (2024-12-19T18:58:36Z) - LiDAR-GS:Real-time LiDAR Re-Simulation using Gaussian Splatting [50.808933338389686]
LiDAR simulation plays a crucial role in closed-loop simulation for autonomous driving.
We present LiDAR-GS, the first LiDAR Gaussian Splatting method, for real-time high-fidelity re-simulation of LiDAR sensor scans in public urban road scenes.
Our approach succeeds in simultaneously re-simulating depth, intensity, and ray-drop channels, achieving state-of-the-art results in both rendering frame rate and quality on publically available large scene datasets.
arXiv Detail & Related papers (2024-10-07T15:07:56Z) - Multi-Modal Data-Efficient 3D Scene Understanding for Autonomous Driving [58.16024314532443]
We introduce LaserMix++, a framework that integrates laser beam manipulations from disparate LiDAR scans and incorporates LiDAR-camera correspondences to assist data-efficient learning.
Results demonstrate that LaserMix++ outperforms fully supervised alternatives, achieving comparable accuracy with five times fewer annotations.
This substantial advancement underscores the potential of semi-supervised approaches in reducing the reliance on extensive labeled data in LiDAR-based 3D scene understanding systems.
arXiv Detail & Related papers (2024-05-08T17:59:53Z) - LidaRF: Delving into Lidar for Neural Radiance Field on Street Scenes [73.65115834242866]
Photorealistic simulation plays a crucial role in applications such as autonomous driving.
However, reconstruction quality suffers on street scenes due to collinear camera motions and sparser samplings at higher speeds.
We propose several insights that allow a better utilization of Lidar data to improve NeRF quality on street scenes.
arXiv Detail & Related papers (2024-05-01T23:07:12Z) - SGD: Street View Synthesis with Gaussian Splatting and Diffusion Prior [53.52396082006044]
Current methods struggle to maintain rendering quality at the viewpoint that deviates significantly from the training viewpoints.
This issue stems from the sparse training views captured by a fixed camera on a moving vehicle.
We propose a novel approach that enhances the capacity of 3DGS by leveraging prior from a Diffusion Model.
arXiv Detail & Related papers (2024-03-29T09:20:29Z) - LiDAR View Synthesis for Robust Vehicle Navigation Without Expert Labels [50.40632021583213]
We propose synthesizing additional LiDAR point clouds from novel viewpoints without physically driving at dangerous positions.
We train a deep learning model, which takes a LiDAR scan as input and predicts the future trajectory as output.
A waypoint controller is then applied to this predicted trajectory to determine the throttle and steering labels of the ego-vehicle.
arXiv Detail & Related papers (2023-08-02T20:46:43Z) - NeRF-LiDAR: Generating Realistic LiDAR Point Clouds with Neural Radiance
Fields [20.887421720818892]
We present NeRF-LIDAR, a novel LiDAR simulation method that leverages real-world information to generate realistic LIDAR point clouds.
We verify the effectiveness of our NeRF-LiDAR by training different 3D segmentation models on the generated LiDAR point clouds.
arXiv Detail & Related papers (2023-04-28T12:41:28Z) - Recovering and Simulating Pedestrians in the Wild [81.38135735146015]
We propose to recover the shape and motion of pedestrians from sensor readings captured in the wild by a self-driving car driving around.
We incorporate the reconstructed pedestrian assets bank in a realistic 3D simulation system.
We show that the simulated LiDAR data can be used to significantly reduce the amount of real-world data required for visual perception tasks.
arXiv Detail & Related papers (2020-11-16T17:16:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.