Generative Multiview Relighting for 3D Reconstruction under Extreme Illumination Variation
- URL: http://arxiv.org/abs/2412.15211v1
- Date: Thu, 19 Dec 2024 18:59:51 GMT
- Title: Generative Multiview Relighting for 3D Reconstruction under Extreme Illumination Variation
- Authors: Hadi Alzayer, Philipp Henzler, Jonathan T. Barron, Jia-Bin Huang, Pratul P. Srinivasan, Dor Verbin,
- Abstract summary: Reconstructing the geometry and appearance of objects from photographs taken in different environments is difficult.
We present an approach that reconstructs objects from images taken under different illuminations.
We validate our proposed approach on both synthetic and real datasets and demonstrate that it greatly outperforms existing techniques.
- Score: 47.661481904822644
- License:
- Abstract: Reconstructing the geometry and appearance of objects from photographs taken in different environments is difficult as the illumination and therefore the object appearance vary across captured images. This is particularly challenging for more specular objects whose appearance strongly depends on the viewing direction. Some prior approaches model appearance variation across images using a per-image embedding vector, while others use physically-based rendering to recover the materials and per-image illumination. Such approaches fail at faithfully recovering view-dependent appearance given significant variation in input illumination and tend to produce mostly diffuse results. We present an approach that reconstructs objects from images taken under different illuminations by first relighting the images under a single reference illumination with a multiview relighting diffusion model and then reconstructing the object's geometry and appearance with a radiance field architecture that is robust to the small remaining inconsistencies among the relit images. We validate our proposed approach on both synthetic and real datasets and demonstrate that it greatly outperforms existing techniques at reconstructing high-fidelity appearance from images taken under extreme illumination variation. Moreover, our approach is particularly effective at recovering view-dependent "shiny" appearance which cannot be reconstructed by prior methods.
Related papers
- IDArb: Intrinsic Decomposition for Arbitrary Number of Input Views and Illuminations [64.07859467542664]
Capturing geometric and material information from images remains a fundamental challenge in computer vision and graphics.
Traditional optimization-based methods often require hours of computational time to reconstruct geometry, material properties, and environmental lighting from dense multi-view inputs.
We introduce IDArb, a diffusion-based model designed to perform intrinsic decomposition on an arbitrary number of images under varying illuminations.
arXiv Detail & Related papers (2024-12-16T18:52:56Z) - Factored-NeuS: Reconstructing Surfaces, Illumination, and Materials of
Possibly Glossy Objects [46.04357263321969]
We develop a method that recovers the surface, materials, and illumination of a scene from its posed multi-view images.
It does not require any additional data and can handle glossy objects or bright lighting.
arXiv Detail & Related papers (2023-05-29T07:44:19Z) - NeRO: Neural Geometry and BRDF Reconstruction of Reflective Objects from
Multiview Images [44.1333444097976]
We present a neural rendering-based method called NeRO for reconstructing the geometry and the BRDF of reflective objects from multiview images captured in an unknown environment.
arXiv Detail & Related papers (2023-05-27T07:40:07Z) - IRISformer: Dense Vision Transformers for Single-Image Inverse Rendering
in Indoor Scenes [99.76677232870192]
We show how a dense vision transformer, IRISformer, excels at both single-task and multi-task reasoning required for inverse rendering.
Specifically, we propose a transformer architecture to simultaneously estimate depths, normals, spatially-varying albedo, roughness and lighting from a single image of an indoor scene.
Our evaluations on benchmark datasets demonstrate state-of-the-art results on each of the above tasks, enabling applications like object insertion and material editing in a single unconstrained real image.
arXiv Detail & Related papers (2022-06-16T19:50:55Z) - DIB-R++: Learning to Predict Lighting and Material with a Hybrid
Differentiable Renderer [78.91753256634453]
We consider the challenging problem of predicting intrinsic object properties from a single image by exploiting differentiables.
In this work, we propose DIBR++, a hybrid differentiable which supports these effects by combining specularization and ray-tracing.
Compared to more advanced physics-based differentiables, DIBR++ is highly performant due to its compact and expressive model.
arXiv Detail & Related papers (2021-10-30T01:59:39Z) - Towards High Fidelity Monocular Face Reconstruction with Rich
Reflectance using Self-supervised Learning and Ray Tracing [49.759478460828504]
Methods combining deep neural network encoders with differentiable rendering have opened up the path for very fast monocular reconstruction of geometry, lighting and reflectance.
ray tracing was introduced for monocular face reconstruction within a classic optimization-based framework.
We propose a new method that greatly improves reconstruction quality and robustness in general scenes.
arXiv Detail & Related papers (2021-03-29T08:58:10Z) - Deep 3D Capture: Geometry and Reflectance from Sparse Multi-View Images [59.906948203578544]
We introduce a novel learning-based method to reconstruct the high-quality geometry and complex, spatially-varying BRDF of an arbitrary object.
We first estimate per-view depth maps using a deep multi-view stereo network.
These depth maps are used to coarsely align the different views.
We propose a novel multi-view reflectance estimation network architecture.
arXiv Detail & Related papers (2020-03-27T21:28:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.