論文の概要: Multi-Branch Mutual-Distillation Transformer for EEG-Based Seizure Subtype Classification
- arxiv url: http://arxiv.org/abs/2412.15224v1
- Date: Wed, 04 Dec 2024 11:31:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-29 08:57:49.299731
- Title: Multi-Branch Mutual-Distillation Transformer for EEG-Based Seizure Subtype Classification
- Title(参考訳): 脳波サブタイプ分類のためのマルチブランチ相互蒸留変換器
- Authors: Ruimin Peng, Zhenbang Du, Changming Zhao, Jingwei Luo, Wenzhong Liu, Xinxing Chen, Dongrui Wu,
- Abstract要約: てんかんの診断において, クロスオブジェクト脳波(EEG)に基づく発作サブタイプ分類が重要である。
ディープラーニングは、潜在パターンを自動的に抽出する能力のため、有望なソリューションである。
本稿では,クロスオブジェクト脳波に基づく発作サブタイプ分類のためのマルチブランチ相互蒸留変換器を提案する。
- 参考スコア(独自算出の注目度): 12.878751432823693
- License:
- Abstract: Cross-subject electroencephalogram (EEG) based seizure subtype classification is very important in precise epilepsy diagnostics. Deep learning is a promising solution, due to its ability to automatically extract latent patterns. However, it usually requires a large amount of training data, which may not always be available in clinical practice. This paper proposes Multi-Branch Mutual-Distillation (MBMD) Transformer for cross-subject EEG-based seizure subtype classification, which can be effectively trained from small labeled data. MBMD Transformer replaces all even-numbered encoder blocks of the vanilla Vision Transformer by our designed multi-branch encoder blocks. A mutual-distillation strategy is proposed to transfer knowledge between the raw EEG data and its wavelets of different frequency bands. Experiments on two public EEG datasets demonstrated that our proposed MBMD Transformer outperformed several traditional machine learning and state-of-the-art deep learning approaches. To our knowledge, this is the first work on knowledge distillation for EEG-based seizure subtype classification.
- Abstract(参考訳): クロスオブジェクト脳波(EEG)に基づく発作サブタイプ分類は、正確なてんかん診断において非常に重要である。
ディープラーニングは、潜在パターンを自動的に抽出する能力のため、有望なソリューションである。
しかし、通常は大量のトレーニングデータを必要とするため、常に臨床で利用できるとは限らない。
本稿では,小ラベルデータから効果的に学習可能な,クロスオブジェクト脳波に基づく発作サブタイプ分類のためのマルチブランチ相互蒸留(MBMD)トランスフォーマを提案する。
MBMD Transformerは、Vanilla Vision Transformerの偶数個のエンコーダブロックを、設計したマルチブランチエンコーダブロックで置き換える。
生の脳波データと異なる周波数帯域のウェーブレット間で知識を伝達するための相互蒸留戦略を提案する。
2つのパブリックEEGデータセットの実験により、提案したMBMD Transformerは、従来の機械学習や最先端のディープラーニングアプローチよりも優れていたことが実証された。
我々の知る限り、脳波に基づく発作サブタイプ分類のための知識蒸留に関する最初の研究である。
関連論文リスト
- Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
本稿では,畳み込みニューラルネットワーク(CNN)とトランスフォーマー層を組み合わせたハイブリッドネットワークを提案する。
プライベートおよびパブリックなDCE-MRIデータセットの実験結果から,提案したハイブリッドネットワークは最先端の手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-08-11T15:46:00Z) - EEG-Deformer: A Dense Convolutional Transformer for Brain-computer Interfaces [17.524441950422627]
本稿では,CNN-Transformerに2つの新しいコンポーネントを組み込んだEEG-Deformerを紹介する。
EEG-Deformerは神経生理学的に意味のある脳領域から学習し、対応する認知タスクを学習する。
論文 参考訳(メタデータ) (2024-04-25T18:00:46Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
心電図不整脈分類におけるアナログ計算と深層学習を組み合わせた統合的アプローチを提案する。
本稿では,低消費電力で高精度にアーカイブするハードウェア効率と完全アナログ不整脈分類アーキテクチャであるEKGNetを提案する。
論文 参考訳(メタデータ) (2023-10-24T02:37:49Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
本稿では, 原子核位置を直接生成する新しいアフィン一貫性変換器 (AC-Former) を提案する。
本稿では,AAT (Adaptive Affine Transformer) モジュールを導入し,ローカルネットワークトレーニングのためのオリジナル画像をワープするための重要な空間変換を自動学習する。
実験結果から,提案手法は様々なベンチマークにおいて既存の最先端アルゴリズムを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2023-10-22T02:27:02Z) - Masked Transformer for Electrocardiogram Classification [7.229662895786343]
MTECG(Masked Transformer for ECG classification)は、ECG分類における最新の最先端アルゴリズムを著しく上回る、単純かつ効果的な手法である。
220,251個の心電図記録と広範囲の診断を行い,医療専門家が注釈を付した不破井データセットを構築した。
論文 参考訳(メタデータ) (2023-08-31T09:21:23Z) - MP-SeizNet: A Multi-Path CNN Bi-LSTM Network for Seizure-Type
Classification Using EEG [2.1915057426589746]
てんかん患者の治療と管理には, 精垂型鑑別が不可欠である。
本稿では,MP-SeizNetを用いた新しいマルチパス・アセプション型ディープラーニング・ネットワークを提案する。
MP-SeizNetは、畳み込みニューラルネットワーク(CNN)と、注意機構を備えた双方向長短期記憶ニューラルネットワーク(Bi-LSTM)で構成されている。
論文 参考訳(メタデータ) (2022-11-09T01:07:20Z) - 2021 BEETL Competition: Advancing Transfer Learning for Subject
Independence & Heterogenous EEG Data Sets [89.84774119537087]
我々は、診断とBCI(Brain-Computer-Interface)に関する2つの伝達学習課題を設計する。
第1タスクは、患者全体にわたる自動睡眠ステージアノテーションに対処する医療診断に重点を置いている。
タスク2はBrain-Computer Interface (BCI)に集中しており、被験者とデータセットの両方にわたる運動画像のデコードに対処する。
論文 参考訳(メタデータ) (2022-02-14T12:12:20Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
本研究では,深層学習に基づく脳波チャンネルの特徴レベル融合を行う。
チャネル選択,融合,分類手順を2つの最適化アルゴリズムで最適化した。
論文 参考訳(メタデータ) (2021-12-18T14:17:49Z) - Transformer-based Spatial-Temporal Feature Learning for EEG Decoding [4.8276709243429]
本稿では,主に注意機構に依存する新しい脳波復号法を提案する。
我々はより少ないパラメータで、脳波の多分類化における最先端のレベルに達しました。
脳-コンピュータインタフェース(BCI)の実用性を促進する大きな可能性を秘めている。
論文 参考訳(メタデータ) (2021-06-11T00:48:18Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Automatic detection of abnormal EEG signals using wavelet feature
extraction and gradient boosting decision tree [2.924868086534434]
多チャンネル脳波記録における脳信号の自動二分分類フレームワークを提案する。
本稿では,抽出した特徴量の品質を損なうことなく,特徴空間の次元を小さくする手法を提案する。
CatBoostは87.68%のバイナリ分類精度を達成し、同じデータセットの最先端の技術を上回る。
論文 参考訳(メタデータ) (2020-12-18T03:36:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。