論文の概要: Modeling Story Expectations to Understand Engagement: A Generative Framework Using LLMs
- arxiv url: http://arxiv.org/abs/2412.15239v1
- Date: Fri, 13 Dec 2024 04:53:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-29 08:00:09.968464
- Title: Modeling Story Expectations to Understand Engagement: A Generative Framework Using LLMs
- Title(参考訳): エンゲージメントを理解するためのストーリー期待のモデリング: LLMを用いた生成フレームワーク
- Authors: Hortense Fong, George Gui,
- Abstract要約: 本稿では,ストーリーがどのように展開されるかという聴衆の考え方をモデル化するための新しい枠組みを紹介する。
提案手法は,各ストーリーの複数の潜在的継続を生成し,期待,不確実性,驚きに関連する特徴を抽出する。
その結果、読み、コメント、投票のためのエンゲージメントの異なるタイプは、現在のコンテンツ機能と期待されるコンテンツの異なる組み合わせによって引き起こされることが明らかとなった。
- 参考スコア(独自算出の注目度): 3.1767625261233037
- License:
- Abstract: Understanding when and why consumers engage with stories is crucial for content creators and platforms. While existing theories suggest that audience beliefs of what is going to happen should play an important role in engagement decisions, empirical work has mostly focused on developing techniques to directly extract features from actual content, rather than capturing forward-looking beliefs, due to the lack of a principled way to model such beliefs in unstructured narrative data. To complement existing feature extraction techniques, this paper introduces a novel framework that leverages large language models to model audience forward-looking beliefs about how stories might unfold. Our method generates multiple potential continuations for each story and extracts features related to expectations, uncertainty, and surprise using established content analysis techniques. Applying our method to over 30,000 book chapters from Wattpad, we demonstrate that our framework complements existing feature engineering techniques by amplifying their marginal explanatory power on average by 31%. The results reveal that different types of engagement-continuing to read, commenting, and voting-are driven by distinct combinations of current and anticipated content features. Our framework provides a novel way to study and explore how audience forward-looking beliefs shape their engagement with narrative media, with implications for marketing strategy in content-focused industries.
- Abstract(参考訳): 消費者がいつ、なぜストーリーを扱うのかを理解することは、コンテンツクリエーターやプラットフォームにとって不可欠だ。
既存の理論では、何が起こるかという観衆の信念はエンゲージメント決定において重要な役割を果たすべきであると示唆されているが、実証的な研究は主に、非構造化の物語データにおいてそのような信念をモデル化する原則が欠如していることから、前向きな信念を捉えるのではなく、実際のコンテンツから特徴を直接抽出する技術の開発に焦点を絞っている。
本稿では,既存の特徴抽出手法を補完する新しいフレームワークを提案する。
提案手法は,各ストーリーに対する複数の潜在的継続を生成し,定評あるコンテンツ分析手法を用いて,期待,不確実性,驚きに関連する特徴を抽出する。
Wattpadの3万冊以上の章にメソッドを適用することで、我々のフレームワークが既存の機能エンジニアリング技術を補完し、その限界説明力を平均31%向上させることを実証します。
その結果、読み、コメント、投票のためのエンゲージメントの異なるタイプは、現在のコンテンツ機能と期待されるコンテンツの異なる組み合わせによって引き起こされることが明らかとなった。
当社のフレームワークは,コンテンツ中心の産業におけるマーケティング戦略に影響を及ぼすとともに,読者が先見的な信念が物語メディアとの関わりをいかに形作るかを研究する,新たな手段を提供する。
関連論文リスト
- Video Summarization Techniques: A Comprehensive Review [1.6381055567716192]
本稿では,抽象的戦略と抽出的戦略の両方を強調し,映像要約のための様々なアプローチと手法について考察する。
抽出要約のプロセスは、ソースビデオからキーフレームやセグメントを識別し、ショット境界認識やクラスタリングなどの手法を利用する。
一方、抽象的な要約は、深層ニューラルネットワークや自然言語処理、強化学習、注意機構、生成的敵ネットワーク、マルチモーダル学習といった機械学習モデルを用いて、ビデオから不可欠なコンテンツを取得することによって、新たなコンテンツを生成する。
論文 参考訳(メタデータ) (2024-10-06T11:17:54Z) - Multi-Review Fusion-in-Context [20.681734117825822]
接地テキスト生成には、コンテンツ選択とコンテンツ統合の両方が必要である。
最近の研究で、各ステップごとに別々のコンポーネントを持つモジュラーアプローチが提案されている。
本研究は,マルチドキュメント・セッティングにおけるモジュール・テキスト・ジェネレーションのさらなる探求の基盤となるものである。
論文 参考訳(メタデータ) (2024-03-22T17:06:05Z) - A Comprehensive Survey of 3D Dense Captioning: Localizing and Describing
Objects in 3D Scenes [80.20670062509723]
3Dシークエンスキャプションは、3Dシーンの詳細な説明を作成することを目的とした、視覚言語によるブリッジングタスクである。
2次元の視覚的キャプションと比較して、現実世界の表現が密接なため、大きな可能性と課題が提示される。
既存手法の人気と成功にもかかわらず、この分野の進歩を要約した総合的な調査は乏しい。
論文 参考訳(メタデータ) (2024-03-12T10:04:08Z) - Leveraging Open-Vocabulary Diffusion to Camouflaged Instance
Segmentation [59.78520153338878]
テキスト・ツー・イメージ拡散技術は、テキスト記述から高品質な画像を生成する素晴らしい能力を示している。
そこで本研究では,オープン語彙を応用した最先端拡散モデルを用いて,多スケールのテキスト・視覚的特徴を学習する手法を提案する。
論文 参考訳(メタデータ) (2023-12-29T07:59:07Z) - Panel Transitions for Genre Analysis in Visual Narratives [1.320904960556043]
本稿では,漫画や漫画風のビジュアル・ナラティブに基づくジャンルのマルチモーダル分析を行うための新しいアプローチを提案する。
我々は、主観的ラベルをモデル化する際の既存の計算手法の限界と課題を強調した。
論文 参考訳(メタデータ) (2023-12-14T08:05:09Z) - P^3SUM: Preserving Author's Perspective in News Summarization with Diffusion Language Models [57.571395694391654]
既存のアプローチは、要約の50%以上で、ニュース記事の政治的意見やスタンスを変えている。
政治的視点分類器によって制御される拡散モデルに基づく要約手法であるP3SUMを提案する。
3つのニュース要約データセットの実験により、P3SUMは最先端の要約システムより優れていることが示された。
論文 参考訳(メタデータ) (2023-11-16T10:14:28Z) - Knowledge-enriched Attention Network with Group-wise Semantic for Visual
Storytelling [39.59158974352266]
視覚的なストーリーテリングは、関連した画像のグループから物語の多文を含む想像的で一貫性のあるストーリーを生成することを目的としている。
既存の手法では、画像以外の暗黙的な情報を探索することができないため、画像に基づくコンテンツの直接的および厳密な記述を生成することが多い。
これらの問題に対処するために,グループワイド・セマンティック・モデルを用いた新しい知識強化型アテンション・ネットワークを提案する。
論文 参考訳(メタデータ) (2022-03-10T12:55:47Z) - Visual Persuasion in COVID-19 Social Media Content: A Multi-Modal
Characterization [30.710295617831015]
本研究では,マルチモーダルコンテンツにおける説得情報の結果を分析するための計算手法を提案する。
Twitterでシェアされた新型コロナウイルス関連のニュース記事において、人気と信頼性の2つの側面に焦点を当てている。
論文 参考訳(メタデータ) (2021-12-05T02:15:01Z) - Unsupervised Opinion Summarization with Content Planning [58.5308638148329]
要約モデルにコンテンツプランニングを明示的に組み込むことで、より高い品質のアウトプットが得られることを示す。
また、より自然な合成データセットを作成し、実世界の文書と要約のペアに似ている。
当社のアプローチは,情報的,一貫性,流動的な要約を生成する上で,競争モデルよりも優れています。
論文 参考訳(メタデータ) (2020-12-14T18:41:58Z) - Summarizing Text on Any Aspects: A Knowledge-Informed Weakly-Supervised
Approach [89.56158561087209]
文書に関連する任意の側面を要約する。
監視データがないため、我々は新しい弱い監督構築法とアスペクト・モデリング・スキームを開発した。
実験により,本手法は実文書と合成文書の両方を要約することで,性能の向上を図っている。
論文 参考訳(メタデータ) (2020-10-14T03:20:46Z) - Few-Shot Learning for Opinion Summarization [117.70510762845338]
オピニオン要約は、複数の文書で表現された主観的な情報を反映したテキストの自動生成である。
本研究では,要約テキストの生成をブートストラップするのには,少数の要約でも十分であることを示す。
提案手法は, 従来の抽出法および抽象法を, 自動的, 人的評価において大きく上回っている。
論文 参考訳(メタデータ) (2020-04-30T15:37:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。