論文の概要: DreaMark: Rooting Watermark in Score Distillation Sampling Generated Neural Radiance Fields
- arxiv url: http://arxiv.org/abs/2412.15278v1
- Date: Wed, 18 Dec 2024 03:27:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-23 16:23:11.266252
- Title: DreaMark: Rooting Watermark in Score Distillation Sampling Generated Neural Radiance Fields
- Title(参考訳): DreaMark: 生成した神経放射場をサンプリングするスコア蒸留におけるローティング透かし
- Authors: Xingyu Zhu, Xiapu Luo, Xuetao Wei,
- Abstract要約: 我々は、NeRF生成中にNeRFをバックドアすることで秘密メッセージを埋め込むDreamarkを提案する。
画像およびモデルレベルの攻撃に対する生成品質と透かしの堅牢性を評価する。
- 参考スコア(独自算出の注目度): 25.545098217655564
- License:
- Abstract: Recent advancements in text-to-3D generation can generate neural radiance fields (NeRFs) with score distillation sampling, enabling 3D asset creation without real-world data capture. With the rapid advancement in NeRF generation quality, protecting the copyright of the generated NeRF has become increasingly important. While prior works can watermark NeRFs in a post-generation way, they suffer from two vulnerabilities. First, a delay lies between NeRF generation and watermarking because the secret message is embedded into the NeRF model post-generation through fine-tuning. Second, generating a non-watermarked NeRF as an intermediate creates a potential vulnerability for theft. To address both issues, we propose Dreamark to embed a secret message by backdooring the NeRF during NeRF generation. In detail, we first pre-train a watermark decoder. Then, the Dreamark generates backdoored NeRFs in a way that the target secret message can be verified by the pre-trained watermark decoder on an arbitrary trigger viewport. We evaluate the generation quality and watermark robustness against image- and model-level attacks. Extensive experiments show that the watermarking process will not degrade the generation quality, and the watermark achieves 90+% accuracy among both image-level attacks (e.g., Gaussian noise) and model-level attacks (e.g., pruning attack).
- Abstract(参考訳): テキストから3D生成の最近の進歩は、スコア蒸留サンプリングによるニューラルラジアンス場(NeRF)を生成し、実世界のデータキャプチャなしで3Dアセット作成を可能にする。
NeRF生成品質の急速な向上に伴い,生成したNeRFの著作権保護がますます重要になっている。
以前の研究は、後の世代でNeRFをウォーターマークすることができるが、それらは2つの脆弱性に悩まされている。
まず、秘密メッセージが微調整によってNeRFモデルに埋め込まれるため、NeRF生成と透かしの間に遅延がある。
第二に、非透かしのNeRFを中間体として生成すると、盗難の潜在的な脆弱性が生じる。
両問題に対処するため,NeRF生成時にNeRFをバックドアすることで秘密メッセージを埋め込むDreamarkを提案する。
詳細は、最初にウォーターマークデコーダを事前訓練する。
そして、Dreamarkは、任意のトリガビューポート上の予め訓練された透かしデコーダにより、ターゲットの秘密メッセージを検証できるように、バックドアのNeRFを生成する。
画像およびモデルレベルの攻撃に対する生成品質と透かしの堅牢性を評価する。
画像レベルの攻撃(例:ガウス雑音)とモデルレベルの攻撃(例:プルーニング攻撃)の両方において、ウォーターマークは90%以上の精度を達成する。
関連論文リスト
- Protecting NeRFs' Copyright via Plug-And-Play Watermarking Base Model [29.545874014535297]
ニューラル・ラジアンス・フィールド(NeRF)は3次元シーン表現の鍵となる手法となっている。
我々は,NeRFの著作権保護のためのプラグイン・アンド・プレイ戦略を採用したtextbfNeRFProtectorを提案する。
論文 参考訳(メタデータ) (2024-07-10T15:06:52Z) - WateRF: Robust Watermarks in Radiance Fields for Protection of Copyrights [10.136998438185882]
我々はNeRFの両表現に利用できる革新的な透かし手法を提案する。
これは、NeRFを微調整してバイナリメッセージをレンダリングプロセスに埋め込むことによって実現される。
提案手法は,2次元レンダリング画像に埋め込まれた透かしの容量,可視性,堅牢性の3つの異なる側面で評価する。
論文 参考訳(メタデータ) (2024-05-03T12:56:34Z) - Wide Flat Minimum Watermarking for Robust Ownership Verification of GANs [23.639074918667625]
ホワイトボックス攻撃に対するロバスト性を向上したGANのための新しいマルチビット・ボックスフリー透かし手法を提案する。
透かしは、GANトレーニング中に余分な透かし損失項を追加することで埋め込む。
その結果,透かしの存在が画像の品質に与える影響は無視できることがわかった。
論文 参考訳(メタデータ) (2023-10-25T18:38:10Z) - Shielding the Unseen: Privacy Protection through Poisoning NeRF with
Spatial Deformation [59.302770084115814]
本稿では,Neural Radiance Fields(NeRF)モデルの生成機能に対して,ユーザのプライバシを保護する革新的な手法を提案する。
我々の新しい中毒攻撃法は、人間の目では認識できないが、NeRFが正確に3Dシーンを再構築する能力を損なうのに十分強力である観察ビューの変化を誘発する。
我々は、高品質の画像を含む29の現実世界シーンからなる2つの共通のNeRFベンチマークデータセットに対して、我々のアプローチを広範囲に検証した。
論文 参考訳(メタデータ) (2023-10-04T19:35:56Z) - MarkNerf:Watermarking for Neural Radiance Field [6.29495604869364]
暗黙的な3Dモデルの著作権保護問題に対処するために,透かしアルゴリズムを提案する。
実験により,提案アルゴリズムは3次元モデルの著作権を効果的に保護することを示した。
論文 参考訳(メタデータ) (2023-09-21T03:00:09Z) - Towards Robust Model Watermark via Reducing Parametric Vulnerability [57.66709830576457]
バックドアベースのオーナシップ検証が最近人気となり,モデルオーナがモデルをウォーターマークすることが可能になった。
本研究では,これらの透かし除去モデルを発見し,それらの透かし挙動を復元するミニマックス定式化を提案する。
本手法は,パラメトリックな変化と多数のウォーターマーク除去攻撃に対するモデル透かしの堅牢性を向上させる。
論文 参考訳(メタデータ) (2023-09-09T12:46:08Z) - DReg-NeRF: Deep Registration for Neural Radiance Fields [66.69049158826677]
我々は,人間の介入なしにオブジェクト中心のアノテートシーンにおけるNeRF登録問題を解くためにDReg-NeRFを提案する。
提案手法は,SOTAポイントクラウド登録方式を大きなマージンで打ち負かす。
論文 参考訳(メタデータ) (2023-08-18T08:37:49Z) - An Unforgeable Publicly Verifiable Watermark for Large Language Models [84.2805275589553]
現在の透かし検出アルゴリズムは、透かし生成プロセスで使用される秘密鍵を必要としており、公開検出中にセキュリティ違反や偽造の影響を受ける。
両段階で同じキーを使用するのではなく、2つの異なるニューラルネットワークを用いて透かしの生成と検出を行う。
論文 参考訳(メタデータ) (2023-07-30T13:43:27Z) - PTW: Pivotal Tuning Watermarking for Pre-Trained Image Generators [42.0915430715226]
本稿では,事前学習した発電機の透かし手法であるPivotal Tuning Watermarking (PTW)を提案する。
PTWは、ジェネレータの画質を良く保ちながら、既存の方法よりも長いコードを埋め込むことができる。
本研究では,厳密なゲームベースによる堅牢性と非検出性の定義を提案し,適応型ホワイトボックス攻撃に対してウォーターマーキングが堅牢でないことを示す。
論文 参考訳(メタデータ) (2023-04-14T19:44:37Z) - Latent-NeRF for Shape-Guided Generation of 3D Shapes and Textures [72.44361273600207]
我々は, スコア蒸留を, 一般に利用可能な, 計算効率の良い遅延拡散モデルに適用する。
潜在拡散モデルは、事前訓練された自己エンコーダのコンパクト潜在空間に全拡散過程を適用する。
これらの結果から, 3次元メッシュに直接, 潜在スコア蒸留を適用できることが示唆された。
論文 参考訳(メタデータ) (2022-11-14T18:25:24Z) - Sem2NeRF: Converting Single-View Semantic Masks to Neural Radiance
Fields [49.41982694533966]
本稿では,1つの単一ビューセマンティックマスクを入力として条件付けしたSemantic-to-NeRF変換を提案する。
特に、Sem2NeRFは、事前訓練されたデコーダの3Dシーン表現を制御する潜在コードにセマンティックマスクをエンコードすることで、非常に困難なタスクに対処する。
提案したSem2NeRFの有効性を検証し、2つのベンチマークデータセット上でいくつかの強いベースラインを上回ります。
論文 参考訳(メタデータ) (2022-03-21T09:15:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。