論文の概要: Log-Time K-Means Clustering for 1D Data: Novel Approaches with Proof and Implementation
- arxiv url: http://arxiv.org/abs/2412.15295v1
- Date: Thu, 19 Dec 2024 09:03:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-23 16:19:57.831567
- Title: Log-Time K-Means Clustering for 1D Data: Novel Approaches with Proof and Implementation
- Title(参考訳): 1次元データのためのログ時間K平均クラスタリング:証明と実装による新しいアプローチ
- Authors: Jake Hyun,
- Abstract要約: この論文は1D$k$-meansクラスタリングの理論と実践を橋渡しし、JIT最適化オープンソースのPythonライブラリで実装された効率的で健全なアルゴリズムを提供する。
ベンチマークでは、大規模データセットのScikit-learnと比較して4500倍以上のスピードアップを示しながら、クラスタ内総和(WCSS)によって測定されたクラスタリング品質を維持している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Clustering is a key task in machine learning, with $k$-means being widely used for its simplicity and effectiveness. While 1D clustering is common, existing methods often fail to exploit the structure of 1D data, leading to inefficiencies. This thesis introduces optimized algorithms for $k$-means++ initialization and Lloyd's algorithm, leveraging sorted data, prefix sums, and binary search for improved computational performance. The main contributions are: (1) an optimized $k$-cluster algorithm achieving $O(l \cdot k^2 \cdot \log n)$ complexity for greedy $k$-means++ initialization and $O(i \cdot k \cdot \log n)$ for Lloyd's algorithm, where $l$ is the number of greedy $k$-means++ local trials, and $i$ is the number of Lloyd's algorithm iterations, and (2) a binary search-based two-cluster algorithm, achieving $O(\log n)$ runtime with deterministic convergence to a Lloyd's algorithm local minimum. Benchmarks demonstrate over 4500x speedup compared to scikit-learn for large datasets while maintaining clustering quality measured by within-cluster sum of squares (WCSS). Additionally, the algorithms achieve a 300x speedup in an LLM quantization task, highlighting their utility in emerging applications. This thesis bridges theory and practice for 1D $k$-means clustering, delivering efficient and sound algorithms implemented in a JIT-optimized open-source Python library.
- Abstract(参考訳): クラスタリングは機械学習における重要なタスクであり、その単純さと有効性のために、$k$-meansが広く利用されている。
1Dクラスタリングは一般的だが、既存の手法では1Dデータの構造をうまく利用できず、非効率になることが多い。
この論文では、$k$-means++初期化のための最適化アルゴリズムと、ソートされたデータ、プレフィックス和、二進探索を活用して計算性能を向上させるロイドのアルゴリズムを導入している。
主な貢献は、(1) 最適化された$k$-clusterアルゴリズムが$O(l \cdot k^2 \cdot \log n)$ complexity for greedy $k$-means++ initialization and $O(i \cdot k \cdot \log n)$ for Lloyd's algorithm, where $l$ is the number of greedy $k$-means++ local trial, and $i$ is the number of Lloyd's algorithm iterations, (2) binary search-based two-cluster algorithm, achieved $O(\log n)$ runtime with deterministic convergence to Lloyd's algorithm local minimum。
ベンチマークでは、大規模データセットのScikit-learnと比較して4500倍以上のスピードアップを示し、クラスタ内総和(WCSS)によって測定されたクラスタリング品質を維持している。
さらに、LLM量子化タスクにおいて、アルゴリズムは300倍のスピードアップを達成する。
この論文は1D$k$-meansクラスタリングの理論と実践を橋渡しし、JIT最適化オープンソースのPythonライブラリで実装された効率的で健全なアルゴリズムを提供する。
関連論文リスト
- Almost-linear Time Approximation Algorithm to Euclidean $k$-median and $k$-means [4.271492285528115]
Euclidean $k$-medianと$k$-meansの問題、クラスタリングのタスクをモデル化する標準的な2つの方法に注目します。
本稿では,定数係数近似を計算するためのほぼ線形時間アルゴリズムを提案することにより,この問題にほぼ答える。
論文 参考訳(メタデータ) (2024-07-15T20:04:06Z) - A Scalable Algorithm for Individually Fair K-means Clustering [77.93955971520549]
Jung et al. と Mahabadi et al が導入した個別フェア (p$, $k$) クラスタリング問題に対するスケーラブルなアルゴリズムを提案する。
クラスタリングは、各$xin P$に対して$delta(x)$ of $x$の範囲内で中心となる場合、個別にフェアと呼ばれる。
我々は,従来よりもアルゴリズムがはるかに高速であるだけでなく,低コストのソリューションを生み出すことを実証的に示す。
論文 参考訳(メタデータ) (2024-02-09T19:01:48Z) - Simple, Scalable and Effective Clustering via One-Dimensional
Projections [10.807367640692021]
クラスタリングは、教師なし機械学習における基本的な問題であり、データ分析に多くの応用がある。
任意の$k$に対して、期待時間$O(mathrmnnz(X) + nlog n)$で確実に動作する単純なランダム化クラスタリングアルゴリズムを導入する。
我々は,このアルゴリズムが$k$-means目的の任意の入力データセットに対して,近似比$smashwidetildeO(k4)$を達成することを証明した。
論文 参考訳(メタデータ) (2023-10-25T16:37:45Z) - Do you know what q-means? [50.045011844765185]
クラスタリングは、大規模なデータセットを分析する上で最も重要なツールの1つである。
クラスタリングのための"$q$-means"アルゴリズムの改良版を提案する。
また、$Obig(frack2varepsilon2(sqrtkd + log(Nd))big で実行される $varepsilon に対する "dequantized" アルゴリズムも提示する。
論文 参考訳(メタデータ) (2023-08-18T17:52:12Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
正方形損失に関して、標準的なガウス分布の下での$k$ReLU活性化の線形結合をPAC学習する問題をmathbbRd$で検討する。
本研究の主な成果は,この学習課題に対して,サンプルおよび計算複雑性が$(dk/epsilon)O(k)$で,epsilon>0$が目標精度である。
論文 参考訳(メタデータ) (2023-07-24T14:37:22Z) - Near-Optimal Quantum Coreset Construction Algorithms for Clustering [15.513270929560088]
我々は、$tildeO(sqrtnkd3/2)$クエリ複雑性を持つ$mathbbRd$で$k$-clusteringのコアセットを見つける量子アルゴリズムを与える。
私たちのコアセットは入力サイズを$n$から$mathrmpoly(kepsilon-1d)$に減らします。
論文 参考訳(メタデータ) (2023-06-05T12:22:46Z) - A One-Sample Decentralized Proximal Algorithm for Non-Convex Stochastic
Composite Optimization [10.762749887051546]
本稿では,Proxcal$DASA-GTとProxcal$DASA-Aの2時間スケールアルゴリズムを提案する。
以前の作業とは異なり、我々のアルゴリズムは、大きなバッチサイズ、より複雑な単位演算、より強い仮定を必要とせずに、同等の複雑さを達成する。
論文 参考訳(メタデータ) (2023-02-20T05:16:18Z) - Differentially-Private Hierarchical Clustering with Provable
Approximation Guarantees [79.59010418610625]
階層クラスタリングのための微分プライベート近似アルゴリズムについて検討する。
例えば、$epsilon$-DPアルゴリズムは入力データセットに対して$O(|V|2/epsilon)$-additiveエラーを示さなければならない。
本稿では,ブロックを正確に復元する1+o(1)$近似アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-01-31T19:14:30Z) - Private estimation algorithms for stochastic block models and mixture
models [63.07482515700984]
効率的なプライベート推定アルゴリズムを設計するための一般的なツール。
最初の効率的な$(epsilon, delta)$-differentially private algorithm for both weak recovery and exact recovery。
論文 参考訳(メタデータ) (2023-01-11T09:12:28Z) - Clustering Mixture Models in Almost-Linear Time via List-Decodable Mean
Estimation [58.24280149662003]
本稿では,データセットの大部分を敵が破壊できるリストデコタブル平均推定の問題について検討する。
我々は、ほぼ最適な統計的保証を達成するために、リストデコダブル平均推定のための新しいアルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-06-16T03:34:14Z) - Learning Sparse Classifiers: Continuous and Mixed Integer Optimization
Perspectives [10.291482850329892]
混合整数計画法(MIP)は、(最適に) $ell_0$-正規化回帰問題を解くために用いられる。
数分で5万ドルの機能を処理できる正確なアルゴリズムと、$papprox6$でインスタンスに対処できる近似アルゴリズムの2つのクラスを提案する。
さらに,$ell$-regularizedsに対する新しい推定誤差境界を提案する。
論文 参考訳(メタデータ) (2020-01-17T18:47:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。