論文の概要: Taming Multimodal Joint Training for High-Quality Video-to-Audio Synthesis
- arxiv url: http://arxiv.org/abs/2412.15322v1
- Date: Thu, 19 Dec 2024 18:59:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-23 16:21:02.781925
- Title: Taming Multimodal Joint Training for High-Quality Video-to-Audio Synthesis
- Title(参考訳): 高品質ビデオ音声合成のためのマルチモーダルジョイントトレーニング
- Authors: Ho Kei Cheng, Masato Ishii, Akio Hayakawa, Takashi Shibuya, Alexander Schwing, Yuki Mitsufuji,
- Abstract要約: マルチモーダル・ジョイント・トレーニング・フレームワークであるMMAudioを用いて、高品質で同期化された音声、ビデオ、オプションのテキスト条件を合成することを提案する。
MMAudioは大規模で手軽に利用できるテキストオーディオデータを共同でトレーニングし、セマンティックに整合した高品質なオーディオサンプルを生成する。
MMAudioはテキスト・オーディオ・ジェネレーションにおいて驚くほどの競争力を発揮し、ジョイントトレーニングが単一モダリティのパフォーマンスを妨げないことを示す。
- 参考スコア(独自算出の注目度): 56.01110988816489
- License:
- Abstract: We propose to synthesize high-quality and synchronized audio, given video and optional text conditions, using a novel multimodal joint training framework MMAudio. In contrast to single-modality training conditioned on (limited) video data only, MMAudio is jointly trained with larger-scale, readily available text-audio data to learn to generate semantically aligned high-quality audio samples. Additionally, we improve audio-visual synchrony with a conditional synchronization module that aligns video conditions with audio latents at the frame level. Trained with a flow matching objective, MMAudio achieves new video-to-audio state-of-the-art among public models in terms of audio quality, semantic alignment, and audio-visual synchronization, while having a low inference time (1.23s to generate an 8s clip) and just 157M parameters. MMAudio also achieves surprisingly competitive performance in text-to-audio generation, showing that joint training does not hinder single-modality performance. Code and demo are available at: https://hkchengrex.github.io/MMAudio
- Abstract(参考訳): マルチモーダル・ジョイント・トレーニング・フレームワークであるMMAudioを用いて、高品質で同期化された音声、ビデオ、オプションのテキスト条件を合成することを提案する。
MMAudioは、ビデオデータのみに規定された単一モダリティトレーニングとは対照的に、より大規模で手軽に利用できるテキストオーディオデータを使って、意味的に整合した高品質なオーディオサンプルを生成することを学習する。
さらに,映像条件をフレームレベルに調整する条件同期モジュールによる音声・視覚同期を改善した。
フローマッチングの目的でトレーニングされたMMAudioは、オーディオ品質、セマンティックアライメント、オーディオ視覚同期の点で、パブリックモデル間で新しいビデオ・オーディオ・オブ・ザ・アートを実現し、推論時間(1.23秒で8sクリップを生成する)とパラメータはわずか157Mである。
MMAudioはまた、テキスト・オーディオ・ジェネレーションにおいて驚くほどの競争力を発揮し、ジョイントトレーニングが単一モダリティのパフォーマンスを妨げないことを示す。
コードとデモは、https://hkchengrex.github.io/MMAudioで公開されている。
関連論文リスト
- Audio-Agent: Leveraging LLMs For Audio Generation, Editing and Composition [72.22243595269389]
本稿では,テキストやビデオの入力に基づく音声生成,編集,合成のためのフレームワークであるAudio-Agentを紹介する。
VTA(Video-to-audio)タスクでは、既存のほとんどの手法では、ビデオイベントと生成されたオーディオを同期させるタイムスタンプ検出器のトレーニングが必要である。
論文 参考訳(メタデータ) (2024-10-04T11:40:53Z) - Video-Foley: Two-Stage Video-To-Sound Generation via Temporal Event Condition For Foley Sound [6.638504164134713]
音声合成はマルチメディア生産に不可欠であり、音声と映像を時間的・意味的に同期させることによりユーザエクスペリエンスを向上させる。
ビデオから音声生成によるこの労働集約プロセスの自動化に関する最近の研究は、重大な課題に直面している。
本稿では,Root Mean Square (RMS) を用いた音声合成システムであるVideo-Foleyを提案する。
論文 参考訳(メタデータ) (2024-08-21T18:06:15Z) - Masked Generative Video-to-Audio Transformers with Enhanced Synchronicity [12.848371604063168]
本稿では,V2A生成モデルであるMaskVATを提案する。
提案手法は,高品質なオーディオ・ビジュアル特徴とシーケンス・ツー・シーケンス並列構造を組み合わせることで,高い同期性が得られることを示す。
論文 参考訳(メタデータ) (2024-07-15T01:49:59Z) - FoleyCrafter: Bring Silent Videos to Life with Lifelike and Synchronized Sounds [14.636030346325578]
我々は,ビデオと同期する高品質な音響効果の自動生成であるNeural Foleyについて検討し,没入型音声視覚体験を実現する。
本稿では,高品質な音声生成を実現するために,事前学習されたテキスト・音声モデルを活用する新しいフレームワークであるFoleyCrafterを提案する。
FoleyCrafterの特筆すべき利点は、テキストプロンプトとの互換性である。
論文 参考訳(メタデータ) (2024-07-01T17:35:56Z) - Large-scale unsupervised audio pre-training for video-to-speech
synthesis [64.86087257004883]
音声合成は、話者の無声映像から音声信号を再構成する作業である。
本稿では,24kHzで3,500時間以上のオーディオデータをエンコーダ・デコーダモデルでトレーニングすることを提案する。
次に、事前学習したデコーダを用いて、音声合成タスクの音声デコーダを初期化する。
論文 参考訳(メタデータ) (2023-06-27T13:31:33Z) - CLIPSonic: Text-to-Audio Synthesis with Unlabeled Videos and Pretrained
Language-Vision Models [50.42886595228255]
本稿では,橋梁としての視覚的モダリティを活用して,所望のテキスト・オーディオ対応を学習することを提案する。
我々は、事前訓練されたコントラスト言語画像事前学習モデルによって符号化されたビデオフレームを考慮し、条件付き拡散モデルを用いてビデオの音声トラックを生成する。
論文 参考訳(メタデータ) (2023-06-16T05:42:01Z) - MM-Diffusion: Learning Multi-Modal Diffusion Models for Joint Audio and
Video Generation [70.74377373885645]
本稿では,視聴体験と視聴体験を同時に実現する,初の共同音声ビデオ生成フレームワークを提案する。
MM拡散(MM-Diffusion)は、設計による共同記述プロセスのための連続的なマルチモーダルなU-Netで構成されている。
実験は、無条件のオーディオビデオ生成とゼロショット条件付タスクにおいて優れた結果を示す。
論文 参考訳(メタデータ) (2022-12-19T14:11:52Z) - AudioGen: Textually Guided Audio Generation [116.57006301417306]
記述文キャプションに条件付き音声サンプルを生成する問題に対処する。
本研究では,テキスト入力に条件付き音声サンプルを生成する自動回帰モデルであるAaudioGenを提案する。
論文 参考訳(メタデータ) (2022-09-30T10:17:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。