Reliable quantum advantage in quantum battery charging
- URL: http://arxiv.org/abs/2412.15339v1
- Date: Thu, 19 Dec 2024 19:11:50 GMT
- Title: Reliable quantum advantage in quantum battery charging
- Authors: Davide Rinaldi, Radim Filip, Dario Gerace, Giacomo Guarnieri,
- Abstract summary: Energy fluctuations have a significant impact on the charging efficiency.
We study a model in which a flying qubit coherently interacts with a single mode optical cavity.
We show that preparing the latter in a genuinely quantum non-Gaussian Fock state leads to a definite and (in principle) measurable advantage.
- Score: 0.0
- License:
- Abstract: Quantum batteries represent one of the most promising applications of quantum thermodynamics, whose goal is not only to store energy inside small quantum systems but also to potentially leverage genuine quantum effects to outperform classical counterparts. In this context, however, energy fluctuations become extremely relevant and have a significant impact on the charging efficiency. In our work, we consider a simple yet paradigmatic model in which a flying qubit (the battery) coherently interacts with a single mode optical cavity (the charger) through a number conserving Jaynes-Cummings interaction. By making use of full-counting statistics techniques, we fully characterize the average charging power, its fluctuations and the associated charging efficiency for several different choices of initial states of the optical cavity, demonstrating that preparing the latter in a genuinely quantum non-Gaussian Fock state (rather than a classical or even non-classical Gaussian state) leads to a definite and (in principle) measurable advantage in all these figures of merit.
Related papers
- Quantum Latent Diffusion Models [65.16624577812436]
We propose a potential version of a quantum diffusion model that leverages the established idea of classical latent diffusion models.
This involves using a traditional autoencoder to reduce images, followed by operations with variational circuits in the latent space.
The results demonstrate an advantage in using a quantum version, as evidenced by obtaining better metrics for the images generated by the quantum version.
arXiv Detail & Related papers (2025-01-19T21:24:02Z) - Genuine quantum advantage in non-linear bosonic quantum batteries [0.4999814847776097]
We propose a deceptively simple quantum battery model that displays a genuine quantum advantage, saturating the quantum speed limit.
We first present the model, then certify the genuine quantum advantage, and briefly discuss how the battery can be fabricated through the use of superconducting circuits.
arXiv Detail & Related papers (2024-09-13T08:31:35Z) - Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Vacuum enhanced charging of a quantum battery [0.0]
We show how a purely quantum effect related to the vacuum of the electromagnetic field can enhance the charging of a quantum battery.
In particular, we demonstrate how an anti-Jaynes Cummings interaction can be used to increase the stored energy of an effective two-level atom.
arXiv Detail & Related papers (2023-01-31T13:54:14Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Quantum advantage in charging cavity and spin batteries by repeated
interactions [0.0]
Recently, an unconditional advantage has been demonstrated for the process of charging of a quantum battery in a collisional model.
We consider a model where the battery is modeled by a quantum harmonic oscillator or a large spin, charged via repeated interactions with a stream of non-equilibrium qubit units.
For both setups, we show that a quantum protocol can significantly outperform the most general adaptive classical schemes.
arXiv Detail & Related papers (2022-04-29T18:04:27Z) - Quantum advantage of two-level batteries in self-discharging process [0.0]
We study the decoherence effects that lead to charge leakage to the surrounding environment.
The quantum advantage concerning the classical counterpart is highlighted for single- and multi-cell quantum batteries.
arXiv Detail & Related papers (2020-12-22T13:38:09Z) - Entanglement, coherence and charging process of quantum batteries [0.0]
Quantum batteries are devices that use entanglement as main element in its high performance in the charging powerful.
In this paper, we explore the quantum battery performance and its relationship with the amount of entanglement that arises during the charging process.
arXiv Detail & Related papers (2020-06-18T12:48:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.