Genuine quantum advantage in non-linear bosonic quantum batteries
- URL: http://arxiv.org/abs/2409.08627v1
- Date: Fri, 13 Sep 2024 08:31:35 GMT
- Title: Genuine quantum advantage in non-linear bosonic quantum batteries
- Authors: Gian Marcello Andolina, Vittoria Stanzione, Vittorio Giovannetti, Marco Polini,
- Abstract summary: We propose a deceptively simple quantum battery model that displays a genuine quantum advantage, saturating the quantum speed limit.
We first present the model, then certify the genuine quantum advantage, and briefly discuss how the battery can be fabricated through the use of superconducting circuits.
- Score: 0.4999814847776097
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Finding a quantum battery model that displays a genuine quantum advantage, while being prone to experimental fabrication, is an extremely challenging task. In this Letter we propose a deceptively simple quantum battery model that displays a genuine quantum advantage, saturating the quantum speed limit. It consists of two harmonic oscillators (the charger and the battery), coupled during the non-equilibrium charging dynamics by a non-linear interaction. We first present the model, then certify the genuine quantum advantage, and finally briefly discuss how the battery can be fabricated through the use of superconducting circuits.
Related papers
- Scrambling in the Charging of Quantum Batteries [3.5621685463862356]
This Letter investigates the role of quantum scrambling in quantum batteries and its effect on optimal power and charging times.
By analyzing the dynamics of out-of-time-order correlators, our findings indicate that quantum scrambling does not necessarily lead to faster charging, despite its potential for accelerating the process.
arXiv Detail & Related papers (2024-09-16T16:11:55Z) - Two-photon charging of a quantum battery with a Gaussian pulse envelope [0.0]
We show how an exponential enhancement in stored energy can be achieved with a quantum battery thanks to a two-photon charging protocol.
Our results demonstrate a plausible mechanism for quickly storing a vast amount of energy in a quantum object defined by continuous variables.
arXiv Detail & Related papers (2024-07-09T12:35:29Z) - Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Amplification of quantum transfer and quantum ratchet [56.47577824219207]
We study a model of amplification of quantum transfer and making it directed which we call the quantum ratchet model.
The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels.
Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency.
arXiv Detail & Related papers (2023-12-31T14:04:43Z) - A quantum battery with quadratic driving [0.0]
Quantum batteries are energy storage devices built using quantum mechanical objects.
We study theoretically a bipartite quantum battery model, composed of a driven charger connected to an energy holder.
arXiv Detail & Related papers (2023-11-04T15:01:36Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Quantum advantage in charging cavity and spin batteries by repeated
interactions [0.0]
Recently, an unconditional advantage has been demonstrated for the process of charging of a quantum battery in a collisional model.
We consider a model where the battery is modeled by a quantum harmonic oscillator or a large spin, charged via repeated interactions with a stream of non-equilibrium qubit units.
For both setups, we show that a quantum protocol can significantly outperform the most general adaptive classical schemes.
arXiv Detail & Related papers (2022-04-29T18:04:27Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Optimal charging of a superconducting quantum battery [13.084212951440033]
We report the experimental realization of a quantum battery based on superconducting qubits.
Our model explores dark and bright states to achieve stable and powerful charging processes, respectively.
Our results pave the way for proposals of new superconducting circuits able to store extractable work for further usage.
arXiv Detail & Related papers (2021-08-09T18:53:07Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.