論文の概要: Maximising Histopathology Segmentation using Minimal Labels via Self-Supervision
- arxiv url: http://arxiv.org/abs/2412.15389v1
- Date: Thu, 19 Dec 2024 20:43:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-23 16:24:05.436800
- Title: Maximising Histopathology Segmentation using Minimal Labels via Self-Supervision
- Title(参考訳): 自己スーパービジョンによる最小ラベルを用いた病理組織分離の最大化
- Authors: Zeeshan Nisar, Thomas Lampert,
- Abstract要約: UNetのような最先端のディープラーニングセグメンテーション手法には、広範なラベルが必要である。
MDS1やUDAGANのようなマルチスタンスセグメンテーション手法が開発されている。
本稿では,SimCLR,BYOL,HR-CS-COなどの自己指導型事前学習を通じて,95%少ないラベルでもセグメンテーション手法の性能を維持することができることを示す。
- 参考スコア(独自算出の注目度): 0.36832029288386137
- License:
- Abstract: Histopathology, the microscopic examination of tissue samples, is essential for disease diagnosis and prognosis. Accurate segmentation and identification of key regions in histopathology images are crucial for developing automated solutions. However, state-of-art deep learning segmentation methods like UNet require extensive labels, which is both costly and time-consuming, particularly when dealing with multiple stainings. To mitigate this, multi-stain segmentation methods such as MDS1 and UDAGAN have been developed, which reduce the need for labels by requiring only one (source) stain to be labelled. Nonetheless, obtaining source stain labels can still be challenging, and segmentation models fail when they are unavailable. This article shows that through self-supervised pre-training, including SimCLR, BYOL, and a novel approach, HR-CS-CO, the performance of these segmentation methods (UNet, MDS1, and UDAGAN) can be retained even with 95% fewer labels. Notably, with self-supervised pre-training and using only 5% labels, the performance drops are minimal: 5.9% for UNet, 4.5% for MDS1, and 6.2% for UDAGAN, compared to their respective fully supervised counterparts (without pre-training, using 100% labels). The code is available from https://github.com/zeeshannisar/improve_kidney_glomeruli_segmentation [to be made public upon acceptance].
- Abstract(参考訳): 病理組織学は、組織サンプルの顕微鏡検査であり、疾患の診断と予後に不可欠である。
病理組織像における重要な領域の正確なセグメンテーションと同定は,自動解法の開発に不可欠である。
しかし、UNetのような最先端のディープラーニングセグメンテーション手法では、特に複数の染色を扱う場合、コストも時間もかかる広範なラベルが必要である。
これを軽減するため、MDS1やUDAGANのようなマルチステインセグメンテーション法が開発され、ラベル付けを1つだけ必要とすることでラベルの必要を減らした。
それでも、ソースのステンドラベルを取得することは依然として困難であり、セグメンテーションモデルは利用できないときに失敗する。
本稿では,SimCLR,BYOL,HR-CS-COなどの自己指導型事前学習を通じて,これらのセグメンテーション手法(UNet,MDS1,UDAGAN)の性能を95%少ないラベルでも維持可能であることを示す。
特に、自己指導による事前トレーニングと5%ラベルの使用では、パフォーマンス低下は最小限であり、UNetは5.9%、MSS1は4.5%、UDAGANは6.2%である。
コードはhttps://github.com/zeeshannisar/improve_kidney_glomeruli_segmentationから入手できる。
関連論文リスト
- Labeled-to-Unlabeled Distribution Alignment for Partially-Supervised Multi-Organ Medical Image Segmentation [30.953837550398884]
部分教師付き多臓器画像セグメンテーションは統合意味セグメンテーションモデルの構築を目的としている。
本稿では,特徴分布を調整し,識別能力を向上するラベル付き非ラベル分布アライメントフレームワークを提案する。
提案手法は,最先端部分教師方式よりもかなりのマージンで性能を向上する。
論文 参考訳(メタデータ) (2024-09-05T03:55:37Z) - Towards Modality-agnostic Label-efficient Segmentation with Entropy-Regularized Distribution Alignment [62.73503467108322]
この話題は、3次元の点雲のセグメンテーションで広く研究されている。
近年まで、擬似ラベルは、限られた地道ラベルによる訓練を容易にするために広く用いられてきた。
既存の擬似ラベリングアプローチは、重複しないデータのノイズやバリエーションに悩まされる可能性がある。
本研究では,学習用擬似ラベルを正規化し,擬似ラベルとモデル予測とのギャップを効果的に狭める学習戦略を提案する。
論文 参考訳(メタデータ) (2024-08-29T13:31:15Z) - Beyond Strong labels: Weakly-supervised Learning Based on Gaussian Pseudo Labels for The Segmentation of Ellipse-like Vascular Structures in Non-contrast CTs [4.765753560367118]
本稿では,CTスキャンにおける血管構造に基づく深層学習のための弱教師付きフレームワークを提案する。
提案手法の有効性を1つのローカルデータセットと2つのパブリックデータセットで評価する。
論文 参考訳(メタデータ) (2024-02-05T20:08:53Z) - Unsupervised Universal Image Segmentation [59.0383635597103]
本稿では,Unsupervised Universal Model (U2Seg) を提案する。
U2Segは、自己教師付きモデルを利用して、これらのセグメンテーションタスクの擬似意味ラベルを生成する。
次に、これらの擬似意味ラベル上でモデルを自己学習し、かなりの性能向上をもたらす。
論文 参考訳(メタデータ) (2023-12-28T18:59:04Z) - AdLER: Adversarial Training with Label Error Rectification for One-Shot
Medical Image Segmentation [24.902447478719303]
逆トレーニングとラベル誤り訂正(AdLER)を併用した新しいワンショット医用画像分割法を提案する。
具体的には、新しい二重整合性制約を実装し、解剖学的整合性を保証し、登録エラーを低減する。
また,アトラス画像を増大させるための対角的トレーニング戦略も開発し,世代多様性とセグメンテーションの堅牢性を両立させる。
論文 参考訳(メタデータ) (2023-09-02T16:06:50Z) - COSST: Multi-organ Segmentation with Partially Labeled Datasets Using
Comprehensive Supervisions and Self-training [15.639976408273784]
ディープラーニングモデルは、マルチ組織セグメンテーションにおいて顕著な成功を収めてきたが、典型的には、興味のあるすべての器官に注釈を付けた大規模なデータセットを必要とする。
利用可能な部分ラベル付きデータセットの統一モデルを学習して、そのシナジスティックなポテンシャルを活用する方法については、調査が不可欠である。
COSSTと呼ばれる新しい2段階のフレームワークを提案し、このフレームワークは包括的監視信号と自己学習を効果的に効率的に統合する。
論文 参考訳(メタデータ) (2023-04-27T08:55:34Z) - LESS: Label-Efficient Semantic Segmentation for LiDAR Point Clouds [62.49198183539889]
我々は,LiDAR点雲を用いた屋外シーンのためのラベル効率のよいセマンティックセマンティックセマンティクスパイプラインを提案する。
本手法は,半弱教師付き学習を用いて,効率的なラベリング手法を設計する。
提案手法は,100%ラベル付き完全教師付き手法と比較して,さらに競争力が高い。
論文 参考訳(メタデータ) (2022-10-14T19:13:36Z) - All-Around Real Label Supervision: Cyclic Prototype Consistency Learning
for Semi-supervised Medical Image Segmentation [41.157552535752224]
半教師付き学習は、費用がかかる専門家によるアノテーションの取得の重い負担を軽減するため、医用画像のセグメンテーションが大幅に進歩している。
本稿では,ラベル付き-ラベル付き(L2U)フォワードプロセスとラベル付き-ラベル付き(U2L)バックワードプロセスによって構築された,新しいサイクリックプロトタイプ一貫性学習(CPCL)フレームワークを提案する。
我々のフレームワークは、過去のtextit"教師なし"一貫性を新しいtextit"教師なし"一貫性に変える。
論文 参考訳(メタデータ) (2021-09-28T14:34:06Z) - A Closer Look at Self-training for Zero-Label Semantic Segmentation [53.4488444382874]
トレーニング中に見られないクラスをセグメント化できることは、ディープラーニングにおいて重要な技術的課題です。
事前のゼロラベルセマンティクスセグメンテーションは、ビジュアル・セマンティクスの埋め込みや生成モデルを学ぶことによってこのタスクにアプローチする。
本研究では,同一画像の異なる増分から生じる擬似ラベルの交点を取り出し,ノイズの多い擬似ラベルをフィルタリングする整合性正規化器を提案する。
論文 参考訳(メタデータ) (2021-04-21T14:34:33Z) - PseudoSeg: Designing Pseudo Labels for Semantic Segmentation [78.35515004654553]
ラベルなしまたは弱いラベル付きデータを用いたトレーニングのための構造化された擬似ラベルを生成するための擬似ラベルの再設計を提案する。
提案手法の有効性を,低データと高データの両方において示す。
論文 参考訳(メタデータ) (2020-10-19T17:59:30Z) - 3D medical image segmentation with labeled and unlabeled data using
autoencoders at the example of liver segmentation in CT images [58.720142291102135]
本研究では、畳み込みニューラルネットワークによるセグメンテーションを改善するために、オートエンコーダ抽出機能の可能性を検討する。
コンボリューション・オートエンコーダを用いてラベルのないデータから特徴を抽出し,CT画像における3次元肝セグメンテーションの目標タスクを実行するために,マルチスケールの完全畳み込みCNNを用いた。
論文 参考訳(メタデータ) (2020-03-17T20:20:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。