論文の概要: Stylish and Functional: Guided Interpolation Subject to Physical Constraints
- arxiv url: http://arxiv.org/abs/2412.15507v1
- Date: Fri, 20 Dec 2024 02:41:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-23 16:21:22.100319
- Title: Stylish and Functional: Guided Interpolation Subject to Physical Constraints
- Title(参考訳): スチリッシュと機能:身体的制約に対するガイド付き補間
- Authors: Yan-Ying Chen, Nikos Arechiga, Chenyang Yuan, Matthew Hong, Matt Klenk, Charlene Wu,
- Abstract要約: デザイン操作の1つの例は、2つの参照デザインイメージを取得し、それらを両方の側面を組み合わせたデザインイメージを生成するプロンプトとして使用することである。
本稿では,2つの入力設計にインスパイアされた設計の問題点を考察し,生成プロセスにおける物理的,機能的要求を強制するためのゼロショットフレームワークを提案する。
- 参考スコア(独自算出の注目度): 4.730817749718241
- License:
- Abstract: Generative AI is revolutionizing engineering design practices by enabling rapid prototyping and manipulation of designs. One example of design manipulation involves taking two reference design images and using them as prompts to generate a design image that combines aspects of both. Real engineering designs have physical constraints and functional requirements in addition to aesthetic design considerations. Internet-scale foundation models commonly used for image generation, however, are unable to take these physical constraints and functional requirements into consideration as part of the generation process. We consider the problem of generating a design inspired by two input designs, and propose a zero-shot framework toward enforcing physical, functional requirements over the generation process by leveraging a pretrained diffusion model as the backbone. As a case study, we consider the example of rotational symmetry in generation of wheel designs. Automotive wheels are required to be rotationally symmetric for physical stability. We formulate the requirement of rotational symmetry by the use of a symmetrizer, and we use this symmetrizer to guide the diffusion process towards symmetric wheel generations. Our experimental results find that the proposed approach makes generated interpolations with higher realism than methods in related work, as evaluated by Fr\'echet inception distance (FID). We also find that our approach generates designs that more closely satisfy physical and functional requirements than generating without the symmetry guidance.
- Abstract(参考訳): ジェネレーティブAIは、設計の迅速なプロトタイピングと操作を可能にすることによって、エンジニアリング設計プラクティスに革命をもたらしている。
デザイン操作の1つの例は、2つの参照デザインイメージを取得し、それらを両方の側面を組み合わせたデザインイメージを生成するプロンプトとして使用することである。
実際のエンジニアリングデザインは、美的デザインの考慮に加えて、物理的な制約と機能的な要件がある。
しかし、画像生成によく用いられるインターネットスケール基盤モデルは、生成プロセスの一部としてこれらの物理的制約や機能的要件を考慮に入れることができない。
本稿では,2つの入力設計にインスパイアされたデザインを生成することの問題点を考察し,事前学習した拡散モデルをバックボーンとして活用することにより,生成プロセスにおける物理的,機能的要件の強化に向けたゼロショットフレームワークを提案する。
一例として、車輪設計の生成における回転対称性の例を考察する。
自動車の車輪は物理的安定性のために回転対称である必要がある。
シンメトリエータを用いて回転対称性の要求を定式化し、このシンメトリエータを用いて対称ホイール生成への拡散過程を導出する。
実験の結果,提案手法はFr'echet開始距離(FID)によって評価され,関連する研究における手法よりも高いリアル性で生成された補間を行うことがわかった。
また,本手法は, 対称性誘導を伴わない設計よりも, 物理的, 機能的要件をより緊密に満たした設計を生成する。
関連論文リスト
- Physics-Informed Geometric Operators to Support Surrogate, Dimension Reduction and Generative Models for Engineering Design [38.00713966087315]
本研究では,代用/分別モデルのトレーニングに供される幾何データを強化するための物理インフォームド幾何演算子(GO)のセットを提案する。
GOは形状の微分的および積分的性質を利用して、高レベルの固有幾何学的情報と物理を訓練に使用する特徴ベクトルに注入する。
論文 参考訳(メタデータ) (2024-07-10T12:50:43Z) - Compositional Generative Inverse Design [69.22782875567547]
入力変数を設計して目的関数を最適化する逆設計は重要な問題である。
拡散モデルにより得られた学習エネルギー関数を最適化することにより、そのような逆例を避けることができることを示す。
N-body 相互作用タスクと2次元多面体設計タスクにおいて,実験時に学習した拡散モデルを構成することにより,初期状態と境界形状を設計できることを示す。
論文 参考訳(メタデータ) (2024-01-24T01:33:39Z) - FAENet: Frame Averaging Equivariant GNN for Materials Modeling [123.19473575281357]
データ変換による任意のモデルE(3)-同変や不変化を実現するために,フレームアラグリング(SFA)に依存したフレキシブルなフレームワークを導入する。
本手法の有効性を理論的および実験的に証明し, 材料モデリングにおける精度と計算スケーラビリティを実証する。
論文 参考訳(メタデータ) (2023-04-28T21:48:31Z) - Design Space Exploration and Explanation via Conditional Variational
Autoencoders in Meta-model-based Conceptual Design of Pedestrian Bridges [52.77024349608834]
本稿では,条件付き変分オートエンコーダ(CVAE)による人間設計者向上のための性能駆動型設計探索フレームワークを提案する。
CVAEはスイスの歩行者橋の合成例18万件で訓練されている。
論文 参考訳(メタデータ) (2022-11-29T17:28:31Z) - Physical Design using Differentiable Learned Simulators [9.380022457753938]
逆設計では、学習したフォワードシミュレータは勾配に基づく設計最適化と組み合わせられる。
この枠組みは数百歩の軌跡を伝播することで高品質な設計を行う。
この結果から,機械学習をベースとしたシミュレータは,いくつかの課題があるにもかかわらず,汎用設計の最適化をサポートできる段階まで成熟していることが示唆された。
論文 参考訳(メタデータ) (2022-02-01T19:56:39Z) - Inverse design of photonic devices with strict foundry fabrication
constraints [55.41644538483948]
本稿では,ナノフォトニクス素子の逆設計法を提案し,設計が厳密な長さの制約を満たすことを保証した。
本手法の性能と信頼性を,いくつかの共通集積フォトニック部品を設計することによって実証する。
論文 参考訳(メタデータ) (2022-01-31T02:27:25Z) - Vitruvion: A Generative Model of Parametric CAD Sketches [22.65229769427499]
本稿では,パラメトリックCADスケッチの生成モデルを提案する。
我々のモデルは、SketchGraphsデータセットから実世界のデザインを訓練し、スケッチをプリミティブのシーケンスとして自動回帰的に合成する。
我々は、部分スケッチ(プライマー)や手描きスケッチのイメージなど、様々な文脈でモデルを条件付けする。
論文 参考訳(メタデータ) (2021-09-29T01:02:30Z) - Machine Learning Framework for Quantum Sampling of Highly-Constrained,
Continuous Optimization Problems [101.18253437732933]
本研究では,連続空間の逆設計問題を,制約のないバイナリ最適化問題にマッピングする,汎用的な機械学習ベースのフレームワークを開発する。
本研究では, 熱発光トポロジを熱光応用に最適化し, (ii) 高効率ビームステアリングのための拡散メタグレーティングを行うことにより, 2つの逆設計問題に対するフレームワークの性能を示す。
論文 参考訳(メタデータ) (2021-05-06T02:22:23Z) - Weakly But Deeply Supervised Occlusion-Reasoned Parametric Layouts [87.370534321618]
複雑な道路シーンのRGBイメージをインプットとして単一の視点で捉えたエンドツーエンドのネットワークを提案し、パースペクティブ空間における閉塞性のあるレイアウトを創出する。
私たちのメソッドで必要とされる唯一の人間のアノテーションは、より安価で入手しにくいパラメトリック属性です。
私たちは、KITTIとNuScenesという2つの公開データセットのアプローチを検証し、人間の監督を大幅に低下させることで、最先端の結果を実現します。
論文 参考訳(メタデータ) (2021-04-14T09:32:29Z) - Generative Design by Reinforcement Learning: Enhancing the Diversity of
Topology Optimization Designs [5.8010446129208155]
本研究では、トポロジ設計の多様性を最大化する報酬関数を備えた強化学習に基づく生成設計プロセスを提案する。
RLをベースとした生成設計は,GPUを完全自動で活用することにより,短時間で多数の多様な設計を生成できることを示す。
論文 参考訳(メタデータ) (2020-08-17T06:50:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。