SGTC: Semantic-Guided Triplet Co-training for Sparsely Annotated Semi-Supervised Medical Image Segmentation
- URL: http://arxiv.org/abs/2412.15526v1
- Date: Fri, 20 Dec 2024 03:31:33 GMT
- Title: SGTC: Semantic-Guided Triplet Co-training for Sparsely Annotated Semi-Supervised Medical Image Segmentation
- Authors: Ke Yan, Qing Cai, Fan Zhang, Ziyan Cao, Zhi Liu,
- Abstract summary: We propose a novel Semantic-Guided Triplet Co-training framework.
It achieves high-end medical image segmentation by only annotating three slices of a few volumetric samples.
Our method outperforms most state-of-the-art semi-supervised counterparts under sparse annotation settings.
- Score: 12.168303995947795
- License:
- Abstract: Although semi-supervised learning has made significant advances in the field of medical image segmentation, fully annotating a volumetric sample slice by slice remains a costly and time-consuming task. Even worse, most of the existing approaches pay much attention to image-level information and ignore semantic features, resulting in the inability to perceive weak boundaries. To address these issues, we propose a novel Semantic-Guided Triplet Co-training (SGTC) framework, which achieves high-end medical image segmentation by only annotating three orthogonal slices of a few volumetric samples, significantly alleviating the burden of radiologists. Our method consist of two main components. Specifically, to enable semantic-aware, fine-granular segmentation and enhance the quality of pseudo-labels, a novel semantic-guided auxiliary learning mechanism is proposed based on the pretrained CLIP. In addition, focusing on a more challenging but clinically realistic scenario, a new triple-view disparity training strategy is proposed, which uses sparse annotations (i.e., only three labeled slices of a few volumes) to perform co-training between three sub-networks, significantly improving the robustness. Extensive experiments on three public medical datasets demonstrate that our method outperforms most state-of-the-art semi-supervised counterparts under sparse annotation settings. The source code is available at https://github.com/xmeimeimei/SGTC.
Related papers
- Enhancing Weakly Supervised 3D Medical Image Segmentation through
Probabilistic-aware Learning [52.249748801637196]
3D medical image segmentation is a challenging task with crucial implications for disease diagnosis and treatment planning.
Recent advances in deep learning have significantly enhanced fully supervised medical image segmentation.
We propose a novel probabilistic-aware weakly supervised learning pipeline, specifically designed for 3D medical imaging.
arXiv Detail & Related papers (2024-03-05T00:46:53Z) - 3D Medical Image Segmentation with Sparse Annotation via Cross-Teaching
between 3D and 2D Networks [26.29122638813974]
We propose a framework that can robustly learn from sparse annotation using the cross-teaching of both 3D and 2D networks.
Our experimental results on the MMWHS dataset demonstrate that our method outperforms the state-of-the-art (SOTA) semi-supervised segmentation methods.
arXiv Detail & Related papers (2023-07-30T15:26:17Z) - Multi-Scale Cross Contrastive Learning for Semi-Supervised Medical Image
Segmentation [14.536384387956527]
We develop a novel Multi-Scale Cross Supervised Contrastive Learning framework to segment structures in medical images.
Our approach contrasts multi-scale features based on ground-truth and cross-predicted labels, in order to extract robust feature representations.
It outperforms state-of-the-art semi-supervised methods by more than 3.0% in Dice.
arXiv Detail & Related papers (2023-06-25T16:55:32Z) - Inherent Consistent Learning for Accurate Semi-supervised Medical Image
Segmentation [30.06702813637713]
We propose a novel Inherent Consistent Learning (ICL) method to learn robust semantic category representations.
The proposed method can outperform the state-of-the-art, especially when the number of annotated data is extremely limited.
arXiv Detail & Related papers (2023-03-24T17:38:03Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - Mine yOur owN Anatomy: Revisiting Medical Image Segmentation with Extremely Limited Labels [54.58539616385138]
We introduce a novel semi-supervised 2D medical image segmentation framework termed Mine yOur owN Anatomy (MONA)
First, prior work argues that every pixel equally matters to the model training; we observe empirically that this alone is unlikely to define meaningful anatomical features.
Second, we construct a set of objectives that encourage the model to be capable of decomposing medical images into a collection of anatomical features.
arXiv Detail & Related papers (2022-09-27T15:50:31Z) - One-shot Weakly-Supervised Segmentation in Medical Images [12.184590794655517]
We present an innovative framework for 3D medical image segmentation with one-shot and weakly-supervised settings.
A propagation-reconstruction network is proposed to project scribbles from annotated volume to unlabeled 3D images.
A dual-level feature denoising module is designed to refine the scribbles based on anatomical- and pixel-level features.
arXiv Detail & Related papers (2021-11-21T09:14:13Z) - Medical Instrument Segmentation in 3D US by Hybrid Constrained
Semi-Supervised Learning [62.13520959168732]
We propose a semi-supervised learning framework for instrument segmentation in 3D US.
To achieve the SSL learning, a Dual-UNet is proposed to segment the instrument.
Our proposed method achieves Dice score of about 68.6%-69.1% and the inference time of about 1 sec. per volume.
arXiv Detail & Related papers (2021-07-30T07:59:45Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
We propose Vicinal Labels Under Uncertainty (VLUU) to bridge the methodological gaps in partially supervised learning (PSL) under data scarcity.
Motivated by multi-task learning and vicinal risk minimization, VLUU transforms the partially supervised problem into a fully supervised problem by generating vicinal labels.
Our research suggests a new research direction in label-efficient deep learning with partial supervision.
arXiv Detail & Related papers (2020-11-28T16:31:00Z) - Deep Q-Network-Driven Catheter Segmentation in 3D US by Hybrid
Constrained Semi-Supervised Learning and Dual-UNet [74.22397862400177]
We propose a novel catheter segmentation approach, which requests fewer annotations than the supervised learning method.
Our scheme considers a deep Q learning as the pre-localization step, which avoids voxel-level annotation.
With the detected catheter, patch-based Dual-UNet is applied to segment the catheter in 3D volumetric data.
arXiv Detail & Related papers (2020-06-25T21:10:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.