NGQA: A Nutritional Graph Question Answering Benchmark for Personalized Health-aware Nutritional Reasoning
- URL: http://arxiv.org/abs/2412.15547v1
- Date: Fri, 20 Dec 2024 04:13:46 GMT
- Title: NGQA: A Nutritional Graph Question Answering Benchmark for Personalized Health-aware Nutritional Reasoning
- Authors: Zheyuan Zhang, Yiyang Li, Nhi Ha Lan Le, Zehong Wang, Tianyi Ma, Vincent Galassi, Keerthiram Murugesan, Nuno Moniz, Werner Geyer, Nitesh V Chawla, Chuxu Zhang, Yanfang Ye,
- Abstract summary: Diet plays a critical role in human health, yet tailoring dietary reasoning to individual health conditions remains a major challenge.
Nutrition Question Answering (QA) has emerged as a popular method for addressing this problem.
We introduce the Nutritional Graph Question Answering (NGQA) benchmark, the first graph question answering dataset designed for personalized nutritional health reasoning.
- Score: 49.06840168630573
- License:
- Abstract: Diet plays a critical role in human health, yet tailoring dietary reasoning to individual health conditions remains a major challenge. Nutrition Question Answering (QA) has emerged as a popular method for addressing this problem. However, current research faces two critical limitations. On one hand, the absence of datasets involving user-specific medical information severely limits \textit{personalization}. This challenge is further compounded by the wide variability in individual health needs. On the other hand, while large language models (LLMs), a popular solution for this task, demonstrate strong reasoning abilities, they struggle with the domain-specific complexities of personalized healthy dietary reasoning, and existing benchmarks fail to capture these challenges. To address these gaps, we introduce the Nutritional Graph Question Answering (NGQA) benchmark, the first graph question answering dataset designed for personalized nutritional health reasoning. NGQA leverages data from the National Health and Nutrition Examination Survey (NHANES) and the Food and Nutrient Database for Dietary Studies (FNDDS) to evaluate whether a food is healthy for a specific user, supported by explanations of the key contributing nutrients. The benchmark incorporates three question complexity settings and evaluates reasoning across three downstream tasks. Extensive experiments with LLM backbones and baseline models demonstrate that the NGQA benchmark effectively challenges existing models. In sum, NGQA addresses a critical real-world problem while advancing GraphQA research with a novel domain-specific benchmark.
Related papers
- NutritionVerse-Direct: Exploring Deep Neural Networks for Multitask Nutrition Prediction from Food Images [63.314702537010355]
Self-reporting methods are often inaccurate and suffer from substantial bias.
Recent work has explored using computer vision prediction systems to predict nutritional information from food images.
This paper aims to enhance the efficacy of dietary intake estimation by leveraging various neural network architectures.
arXiv Detail & Related papers (2024-05-13T14:56:55Z) - Qsnail: A Questionnaire Dataset for Sequential Question Generation [76.616068047362]
We present the first dataset specifically constructed for the questionnaire generation task, which comprises 13,168 human-written questionnaires.
We conduct experiments on Qsnail, and the results reveal that retrieval models and traditional generative models do not fully align with the given research topic and intents.
Despite enhancements through the chain-of-thought prompt and finetuning, questionnaires generated by language models still fall short of human-written questionnaires.
arXiv Detail & Related papers (2024-02-22T04:14:10Z) - CHQ-Summ: A Dataset for Consumer Healthcare Question Summarization [21.331145794496774]
We introduce a new dataset, CHQ-Summ, that contains 1507 domain-expert annotated consumer health questions and corresponding summaries.
The dataset is derived from the community question-answering forum.
We benchmark the dataset on multiple state-of-the-art summarization models to show the effectiveness of the dataset.
arXiv Detail & Related papers (2022-06-14T03:49:03Z) - Vision-Based Food Analysis for Automatic Dietary Assessment [49.32348549508578]
This review presents one unified Vision-Based Dietary Assessment (VBDA) framework, which generally consists of three stages: food image analysis, volume estimation and nutrient derivation.
Deep learning makes VBDA gradually move to an end-to-end implementation, which applies food images to a single network to directly estimate the nutrition.
arXiv Detail & Related papers (2021-08-06T05:46:01Z) - A Review of the Vision-based Approaches for Dietary Assessment [4.347952928399708]
Dietary-related problems such as obesity are a growing concern in todays modern world.
Computer-based food recognition offers automatic visual-based methods to assess dietary intake.
arXiv Detail & Related papers (2021-06-21T06:30:06Z) - Personalized Food Recommendation as Constrained Question Answering over
a Large-scale Food Knowledge Graph [16.58534326000209]
We propose a novel problem formulation for food recommendation, modeling this task as constrained question answering over a large-scale food knowledge base/graph (KBQA)
Besides the requirements from the user query, personalized requirements from the user's dietary preferences and health guidelines are handled in a unified way.
Our approach significantly outperforms non-personalized counterparts.
arXiv Detail & Related papers (2021-01-05T20:38:16Z) - A Review of Critical Features and General Issues of Freely Available
mHealth Apps For Dietary Assessment [2.007262412327553]
Evidence suggests that diet-related mobile applications play a vital role in assisting individuals in making healthier choices.
This study aims to review existing dietary applications at length to highlight key features and problems that enhance or undermine an application's usability.
arXiv Detail & Related papers (2020-08-22T17:27:49Z) - The 1st Challenge on Remote Physiological Signal Sensing (RePSS) [116.88849052951856]
We organize the first challenge on Remote Physiological Signal Sensing (RePSS)
This paper presents an overview of the challenge, including data, protocol, analysis of results and discussion.
arXiv Detail & Related papers (2020-03-26T06:17:54Z) - SQuINTing at VQA Models: Introspecting VQA Models with Sub-Questions [66.86887670416193]
We show that state-of-the-art VQA models have comparable performance in answering perception and reasoning questions, but suffer from consistency problems.
To address this shortcoming, we propose an approach called Sub-Question-aware Network Tuning (SQuINT)
We show that SQuINT improves model consistency by 5%, also marginally improving performance on the Reasoning questions in VQA, while also displaying better attention maps.
arXiv Detail & Related papers (2020-01-20T01:02:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.