Multi Agent Reinforcement Learning for Sequential Satellite Assignment Problems
- URL: http://arxiv.org/abs/2412.15573v1
- Date: Fri, 20 Dec 2024 05:10:34 GMT
- Title: Multi Agent Reinforcement Learning for Sequential Satellite Assignment Problems
- Authors: Joshua Holder, Natasha Jaques, Mehran Mesbahi,
- Abstract summary: Assignment problems are a classic optimization problem in which a group of agents is assigned to a group of tasks.
In many modern-day applications such as satellite, power grids, and mobile robot scheduling, assignment problems unfold over time.
We apply multi-agent reinforcement learning to this problem, learning the value of assignments by bootstrapping from a known RL-time greedy solver.
We demonstrate that our algorithm is theoretically justified and avoids pitfalls experienced by other algorithms in this setting.
- Score: 5.896440476510869
- License:
- Abstract: Assignment problems are a classic combinatorial optimization problem in which a group of agents must be assigned to a group of tasks such that maximum utility is achieved while satisfying assignment constraints. Given the utility of each agent completing each task, polynomial-time algorithms exist to solve a single assignment problem in its simplest form. However, in many modern-day applications such as satellite constellations, power grids, and mobile robot scheduling, assignment problems unfold over time, with the utility for a given assignment depending heavily on the state of the system. We apply multi-agent reinforcement learning to this problem, learning the value of assignments by bootstrapping from a known polynomial-time greedy solver and then learning from further experience. We then choose assignments using a distributed optimal assignment mechanism rather than by selecting them directly. We demonstrate that this algorithm is theoretically justified and avoids pitfalls experienced by other RL algorithms in this setting. Finally, we show that our algorithm significantly outperforms other methods in the literature, even while scaling to realistic scenarios with hundreds of agents and tasks.
Related papers
- A Multiagent Path Search Algorithm for Large-Scale Coalition Structure Generation [61.08720171136229]
Coalition structure generation is a fundamental computational problem in multiagent systems.
We develop SALDAE, a multiagent path finding algorithm for CSG that operates on a graph of coalition structures.
arXiv Detail & Related papers (2025-02-14T15:21:27Z) - Optimal and Bounded-Suboptimal Multi-Goal Task Assignment and Path
Finding [25.11387753357413]
We study the multi-goal task assignment and path finding (MG-TAPF) problem from theoretical and algorithmic perspectives.
Theoretically, we prove that the MG-TAPF problem is NP-hard to solve optimally.
We present algorithms that build upon algorithmic techniques for the multi-agent path finding problem and solve the MG-TAPF problem optimally and bounded-suboptimally.
arXiv Detail & Related papers (2022-08-02T03:17:29Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
We present an end-to-end method to learn the proximal operator across non-family problems.
We show that for weakly-ized objectives and under mild conditions, the method converges globally.
arXiv Detail & Related papers (2022-01-28T05:53:28Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
In online algorithm selection (OAS), instances of an algorithmic problem class are presented to an agent one after another, and the agent has to quickly select a presumably best algorithm from a fixed set of candidate algorithms.
For decision problems such as satisfiability (SAT), quality typically refers to the algorithm's runtime.
In this work, we revisit multi-armed bandit algorithms for OAS and discuss their capability of dealing with the problem.
We adapt them towards runtime-oriented losses, allowing for partially censored data while keeping a space- and time-complexity independent of the time horizon.
arXiv Detail & Related papers (2021-09-13T18:10:52Z) - Learning to Schedule Heuristics in Branch-and-Bound [25.79025327341732]
Real-world applications typically require finding good solutions early in the search to enable fast decision-making.
We propose the first data-driven framework for schedulings in an exact MIP solver.
Compared to the default settings of a state-of-the-art academic MIP solver, we are able to reduce the average primal integral by up to 49% on a class of challenging instances.
arXiv Detail & Related papers (2021-03-18T14:49:52Z) - A Two-stage Framework and Reinforcement Learning-based Optimization
Algorithms for Complex Scheduling Problems [54.61091936472494]
We develop a two-stage framework, in which reinforcement learning (RL) and traditional operations research (OR) algorithms are combined together.
The scheduling problem is solved in two stages, including a finite Markov decision process (MDP) and a mixed-integer programming process, respectively.
Results show that the proposed algorithms could stably and efficiently obtain satisfactory scheduling schemes for agile Earth observation satellite scheduling problems.
arXiv Detail & Related papers (2021-03-10T03:16:12Z) - A Machine Learning Approach for Task and Resource Allocation in Mobile
Edge Computing Based Networks [108.57859531628264]
A joint task, spectrum, and transmit power allocation problem is investigated for a wireless network.
The proposed algorithm can reduce the number of iterations needed for convergence and the maximal delay among all users by up to 18% and 11.1% compared to the standard Q-learning algorithm.
arXiv Detail & Related papers (2020-07-20T13:46:42Z) - Dynamic Multi-Robot Task Allocation under Uncertainty and Temporal
Constraints [52.58352707495122]
We present a multi-robot allocation algorithm that decouples the key computational challenges of sequential decision-making under uncertainty and multi-agent coordination.
We validate our results over a wide range of simulations on two distinct domains: multi-arm conveyor belt pick-and-place and multi-drone delivery dispatch in a city.
arXiv Detail & Related papers (2020-05-27T01:10:41Z) - A Novel Multi-Agent System for Complex Scheduling Problems [2.294014185517203]
This paper is the conception and implementation of a multi-agent system that is applicable in various problem domains.
We simulate a NP-hard scheduling problem to demonstrate the validity of our approach.
This paper highlights the advantages of the agent-based approach, like the reduction in layout complexity, improved control of complicated systems, and extendability.
arXiv Detail & Related papers (2020-04-20T14:04:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.