Microservices-Based Framework for Predictive Analytics and Real-time Performance Enhancement in Travel Reservation Systems
- URL: http://arxiv.org/abs/2412.15616v1
- Date: Fri, 20 Dec 2024 07:19:42 GMT
- Title: Microservices-Based Framework for Predictive Analytics and Real-time Performance Enhancement in Travel Reservation Systems
- Authors: Biman Barua, M. Shamim Kaiser,
- Abstract summary: The paper presents a framework of architecture dedicated to enhancing the performance of real-time travel reservation systems.
Our framework includes real-time predictive analytics, through machine learning models, that optimize forecasting customer demand, dynamic pricing, as well as system performance.
Future work will be an investigation of advanced AI models and edge processing to further improve the performance and robustness of the systems employed.
- Score: 1.03590082373586
- License:
- Abstract: The paper presents a framework of microservices-based architecture dedicated to enhancing the performance of real-time travel reservation systems using the power of predictive analytics. Traditional monolithic systems are bad at scaling and performing with high loads, causing backup resources to be underutilized along with delays. To overcome the above-stated problems, we adopt a modularization approach in decoupling system components into independent services that can grow or shrink according to demand. Our framework also includes real-time predictive analytics, through machine learning models, that optimize forecasting customer demand, dynamic pricing, as well as system performance. With an experimental evaluation applying the approach, we could show that the framework impacts metrics of performance such as response time, throughput, transaction rate of success, and prediction accuracy compared to their conventional counterparts. Not only does the microservices approach improve scalability and fault tolerance like a usual architecture, but it also brings along timely and accurate predictions, which imply a greater customer satisfaction and efficiency of operation. The integration of real-time analytics would lead to more intelligent decision-making, thereby improving the response of the system along with the reliability it holds. A scalable, efficient framework is offered by such a system to address the modern challenges imposed by any form of travel reservation system while considering other complex, data-driven industries as future applications. Future work will be an investigation of advanced AI models and edge processing to further improve the performance and robustness of the systems employed.
Related papers
- The Efficiency vs. Accuracy Trade-off: Optimizing RAG-Enhanced LLM Recommender Systems Using Multi-Head Early Exit [46.37267466656765]
This paper presents an optimization framework that combines Retrieval-Augmented Generation (RAG) with an innovative multi-head early exit architecture.
Our experiments demonstrate how this architecture effectively decreases time without sacrificing the accuracy needed for reliable recommendation delivery.
arXiv Detail & Related papers (2025-01-04T03:26:46Z) - Real-Time Performance Optimization of Travel Reservation Systems Using AI and Microservices [1.03590082373586]
This study proposes a hybrid framework that folds an Artificial Intelligence and a Microservices approach for the performance optimization of the system.
The AI algorithms forecast demand patterns, optimize the allocation of resources, and enhance decision-making driven by Microservices architecture.
arXiv Detail & Related papers (2024-12-09T16:08:22Z) - Optimizing Airline Reservation Systems with Edge-Enabled Microservices: A Framework for Real-Time Data Processing and Enhanced User Responsiveness [1.03590082373586]
This paper outlines a conceptual framework for the implementation of edge computing in the airline industry.
As edge computing allows for certain activities such as seat inventory checks, booking processes and even confirmation to be done nearer to the user, thus lessening the overall response time and improving the performance of the system.
The framework value should include achieving the high performance of the system such as low latency, high throughput and higher user experience.
arXiv Detail & Related papers (2024-11-19T16:58:15Z) - Joint Hypergraph Rewiring and Memory-Augmented Forecasting Techniques in Digital Twin Technology [2.368662284133926]
Digital Twin technology creates virtual replicas of physical objects, processes, or systems by replicating their properties, data, and behaviors.
Digital Twin technology has leveraged Graph forecasting techniques in large-scale complex sensor networks to enable accurate forecasting and simulation of diverse scenarios.
We introduce a hybrid architecture that enhances the hypergraph representation learning backbone by incorporating fast adaptation to new patterns and memory-based retrieval of past knowledge.
arXiv Detail & Related papers (2024-08-22T14:08:45Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - TranDRL: A Transformer-Driven Deep Reinforcement Learning Enabled Prescriptive Maintenance Framework [58.474610046294856]
Industrial systems demand reliable predictive maintenance strategies to enhance operational efficiency and reduce downtime.
This paper introduces an integrated framework that leverages the capabilities of the Transformer model-based neural networks and deep reinforcement learning (DRL) algorithms to optimize system maintenance actions.
arXiv Detail & Related papers (2023-09-29T02:27:54Z) - A Unifying Framework of Attention-based Neural Load Forecasting [6.470432799969585]
We propose a unifying deep learning framework for load forecasting.
It includes time-varying feature weighting, hierarchical temporal attention, and feature-reinforced error correction.
Our framework provides an effective solution to the electric load forecasting problem.
arXiv Detail & Related papers (2023-05-08T22:46:54Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Multi Agent System for Machine Learning Under Uncertainty in Cyber
Physical Manufacturing System [78.60415450507706]
Recent advancements in predictive machine learning has led to its application in various use cases in manufacturing.
Most research focused on maximising predictive accuracy without addressing the uncertainty associated with it.
In this paper, we determine the sources of uncertainty in machine learning and establish the success criteria of a machine learning system to function well under uncertainty.
arXiv Detail & Related papers (2021-07-28T10:28:05Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning (FL) has become a promising tool for training effective machine learning models among distributed clients.
However, low quality models could be uploaded to the aggregator server by unreliable clients, leading to a degradation or even a collapse of training.
We model these unreliable behaviors of clients and propose a defensive mechanism to mitigate such a security risk.
arXiv Detail & Related papers (2021-05-10T08:02:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.