CrackUDA: Incremental Unsupervised Domain Adaptation for Improved Crack Segmentation in Civil Structures
- URL: http://arxiv.org/abs/2412.15637v1
- Date: Fri, 20 Dec 2024 07:55:08 GMT
- Title: CrackUDA: Incremental Unsupervised Domain Adaptation for Improved Crack Segmentation in Civil Structures
- Authors: Kushagra Srivastava, Damodar Datta Kancharla, Rizvi Tahereen, Pradeep Kumar Ramancharla, Ravi Kiran Sarvadevabhatla, Harikumar Kandath,
- Abstract summary: Existing crack segmentation algorithms encounter challenges in maintaining accuracy with domain shifts across datasets.
We propose a novel deep network that employs incremental training with unsupervised domain adaptation (UDA) using adversarial learning.
Our experimental results demonstrate a significant improvement in crack segmentation accuracy and generalization across target domains compared to other UDA methods.
- Score: 8.439574359131353
- License:
- Abstract: Crack segmentation plays a crucial role in ensuring the structural integrity and seismic safety of civil structures. However, existing crack segmentation algorithms encounter challenges in maintaining accuracy with domain shifts across datasets. To address this issue, we propose a novel deep network that employs incremental training with unsupervised domain adaptation (UDA) using adversarial learning, without a significant drop in accuracy in the source domain. Our approach leverages an encoder-decoder architecture, consisting of both domain-invariant and domain-specific parameters. The encoder learns shared crack features across all domains, ensuring robustness to domain variations. Simultaneously, the decoder's domain-specific parameters capture domain-specific features unique to each domain. By combining these components, our model achieves improved crack segmentation performance. Furthermore, we introduce BuildCrack, a new crack dataset comparable to sub-datasets of the well-established CrackSeg9K dataset in terms of image count and crack percentage. We evaluate our proposed approach against state-of-the-art UDA methods using different sub-datasets of CrackSeg9K and our custom dataset. Our experimental results demonstrate a significant improvement in crack segmentation accuracy and generalization across target domains compared to other UDA methods - specifically, an improvement of 0.65 and 2.7 mIoU on source and target domains respectively.
Related papers
- Stratified Domain Adaptation: A Progressive Self-Training Approach for Scene Text Recognition [1.2878987353423252]
Unsupervised domain adaptation (UDA) has become increasingly prevalent in scene text recognition (STR)
We introduce the Stratified Domain Adaptation (StrDA) approach, which examines the gradual escalation of the domain gap for the learning process.
We propose a novel method for employing domain discriminators to estimate the out-of-distribution and domain discriminative levels of data samples.
arXiv Detail & Related papers (2024-10-13T16:40:48Z) - Joint semi-supervised and contrastive learning enables domain generalization and multi-domain segmentation [1.5393913074555419]
We introduce SegCLR, a versatile framework designed to segment images across different domains.
SegCLR employs supervised and contrastive learning simultaneously to effectively learn from both labeled and unlabeled data.
We demonstrate the superior performance of SegCLR through a comprehensive evaluation involving three diverse clinical datasets.
arXiv Detail & Related papers (2024-05-08T18:10:59Z) - SMC-UDA: Structure-Modal Constraint for Unsupervised Cross-Domain Renal
Segmentation [100.86339246424541]
We propose a novel Structure-Modal Constrained (SMC) UDA framework based on a discriminative paradigm and introduce edge structure as a bridge between domains.
With the structure-constrained self-learning and progressive ROI, our methods segment the kidney by locating the 3D spatial structure of the edge.
experiments show that our proposed SMC-UDA has a strong generalization and outperforms generative UDA methods.
arXiv Detail & Related papers (2023-06-14T02:57:23Z) - Domain-aware Triplet loss in Domain Generalization [0.0]
Domain shift is caused by discrepancies in the distributions of the testing and training data.
We design a domainaware triplet loss for domain generalization to help the model to cluster similar semantic features.
Our algorithm is designed to disperse domain information in the embedding space.
arXiv Detail & Related papers (2023-03-01T14:02:01Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - Deep Domain Adaptation for Pavement Crack Detection [9.937576059289269]
We propose a Deep Domain Adaptation-based Crack Detection Network (DDACDN)
DDACDN learns to take advantage of the source domain knowledge to predict the multi-category crack location information in the target domain.
It outperforms state-of-the-art pavement crack detection methods in predicting the crack location on the target domain.
arXiv Detail & Related papers (2021-11-19T08:51:09Z) - Towards Uncovering the Intrinsic Data Structures for Unsupervised Domain
Adaptation using Structurally Regularized Deep Clustering [119.88565565454378]
Unsupervised domain adaptation (UDA) is to learn classification models that make predictions for unlabeled data on a target domain.
We propose a hybrid model of Structurally Regularized Deep Clustering, which integrates the regularized discriminative clustering of target data with a generative one.
Our proposed H-SRDC outperforms all the existing methods under both the inductive and transductive settings.
arXiv Detail & Related papers (2020-12-08T08:52:00Z) - Cross-Domain Facial Expression Recognition: A Unified Evaluation
Benchmark and Adversarial Graph Learning [85.6386289476598]
We develop a novel adversarial graph representation adaptation (AGRA) framework for cross-domain holistic-local feature co-adaptation.
We conduct extensive and fair evaluations on several popular benchmarks and show that the proposed AGRA framework outperforms previous state-of-the-art methods.
arXiv Detail & Related papers (2020-08-03T15:00:31Z) - Domain Conditioned Adaptation Network [90.63261870610211]
We propose a Domain Conditioned Adaptation Network (DCAN) to excite distinct convolutional channels with a domain conditioned channel attention mechanism.
This is the first work to explore the domain-wise convolutional channel activation for deep DA networks.
arXiv Detail & Related papers (2020-05-14T04:23:24Z) - Bi-Directional Generation for Unsupervised Domain Adaptation [61.73001005378002]
Unsupervised domain adaptation facilitates the unlabeled target domain relying on well-established source domain information.
Conventional methods forcefully reducing the domain discrepancy in the latent space will result in the destruction of intrinsic data structure.
We propose a Bi-Directional Generation domain adaptation model with consistent classifiers interpolating two intermediate domains to bridge source and target domains.
arXiv Detail & Related papers (2020-02-12T09:45:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.