論文の概要: CustomTTT: Motion and Appearance Customized Video Generation via Test-Time Training
- arxiv url: http://arxiv.org/abs/2412.15646v1
- Date: Fri, 20 Dec 2024 08:05:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-23 16:23:58.538069
- Title: CustomTTT: Motion and Appearance Customized Video Generation via Test-Time Training
- Title(参考訳): CustomTTT:テストタイムトレーニングによる動きと外観カスタマイズビデオ生成
- Authors: Xiuli Bi, Jian Lu, Bo Liu, Xiaodong Cun, Yong Zhang, Weisheng Li, Bin Xiao,
- Abstract要約: 本稿では,映像の外観や動きを簡単にジョイントできるCustomTTTを提案する。
それぞれのLoRAは個別に訓練されているので、組み合わせた後にパラメータを更新するための新しいテストタイムトレーニング手法を提案する。
本手法は, 定性評価と定量的評価の両面で, 最先端の作業に優れる。
- 参考スコア(独自算出の注目度): 35.43906754134253
- License:
- Abstract: Benefiting from large-scale pre-training of text-video pairs, current text-to-video (T2V) diffusion models can generate high-quality videos from the text description. Besides, given some reference images or videos, the parameter-efficient fine-tuning method, i.e. LoRA, can generate high-quality customized concepts, e.g., the specific subject or the motions from a reference video. However, combining the trained multiple concepts from different references into a single network shows obvious artifacts. To this end, we propose CustomTTT, where we can joint custom the appearance and the motion of the given video easily. In detail, we first analyze the prompt influence in the current video diffusion model and find the LoRAs are only needed for the specific layers for appearance and motion customization. Besides, since each LoRA is trained individually, we propose a novel test-time training technique to update parameters after combination utilizing the trained customized models. We conduct detailed experiments to verify the effectiveness of the proposed methods. Our method outperforms several state-of-the-art works in both qualitative and quantitative evaluations.
- Abstract(参考訳): テキスト・ビデオ・ペアの大規模事前学習に特化して、現在のテキスト・ツー・ビデオ(T2V)拡散モデルでは、テキスト記述から高品質なビデオを生成することができる。
さらに、参照画像やビデオが与えられた場合、パラメータ効率の良い微調整方法、すなわちLoRAは、参照ビデオから特定の主題や動きなど、高品質なカスタマイズされた概念を生成することができる。
しかし、異なる参照からトレーニングされた複数の概念をひとつのネットワークに組み合わせると、明らかな成果物が示される。
この目的のために、私たちはCustomTTTを提案し、そこでは、与えられたビデオの外観と動きを簡単にカスタマイズすることができる。
本稿では、まず、現在の映像拡散モデルにおける迅速な影響を分析し、外見や動きのカスタマイズのための特定の層にのみ必要なLoRAを見つけ出す。
また,各LoRAは個別に訓練されているため,トレーニングしたモデルを用いてパラメータを更新する新しいテストタイムトレーニング手法を提案する。
提案手法の有効性を検証するための詳細な実験を行った。
本手法は, 定性評価と定量的評価の両面で, 最先端の作業に優れる。
関連論文リスト
- Customize-A-Video: One-Shot Motion Customization of Text-to-Video Diffusion Models [48.56724784226513]
本研究では,単一参照ビデオからの動作をモデル化し,空間的・時間的変化のある新しい主題やシーンに適応するCustomize-A-Videoを提案する。
提案するモジュールは、ステージ化されたパイプラインでトレーニングされ、プラグイン・アンド・プレイ方式で推論され、様々な下流タスクへの容易に拡張できる。
論文 参考訳(メタデータ) (2024-02-22T18:38:48Z) - CustomVideo: Customizing Text-to-Video Generation with Multiple Subjects [61.323597069037056]
テキスト・ビデオ・ジェネレーションのパーソナライズへの現在のアプローチは、複数の課題に対処することに悩まされている。
複数の被験者の指導でアイデンティティ保存ビデオを生成する新しいフレームワークであるCustomVideoを提案する。
論文 参考訳(メタデータ) (2024-01-18T13:23:51Z) - Text-Conditioned Resampler For Long Form Video Understanding [94.81955667020867]
トレーニング済みのビジュアルエンコーダと大言語モデル(LLM)を用いたテキストコンディショニングビデオリサンプラー(TCR)モジュールを提案する。
TCRは、最適化された実装なしで、平易な注意で一度に100フレーム以上を処理できる。
論文 参考訳(メタデータ) (2023-12-19T06:42:47Z) - NewMove: Customizing text-to-video models with novel motions [74.9442859239997]
動作をカスタマイズしたテキスト・ビデオ・ジェネレーション・モデルを構築するためのアプローチを提案する。
入力として特定の動きを示すビデオサンプルを活用することで,入力動作パターンを多種多様なテキスト特定シナリオに対して学習し,一般化する。
論文 参考訳(メタデータ) (2023-12-07T18:59:03Z) - Stable Video Diffusion: Scaling Latent Video Diffusion Models to Large
Datasets [36.95521842177614]
本稿では,高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細映像・高精細映像・高精細・高精細・高精細・高精細・高精細・高精細
我々は,テキスト・ツー・イメージ・プレトレーニング,ビデオ・プレトレーニング,高品質ビデオファインタニングの3つの異なる段階を同定し,評価する。
論文 参考訳(メタデータ) (2023-11-25T22:28:38Z) - LAMP: Learn A Motion Pattern for Few-Shot-Based Video Generation [44.220329202024494]
我々は,1つのGPU上で816本の動画でテキストから画像への拡散モデルを学習する,数ショットベースのチューニングフレームワーク LAMP を提案する。
具体的には,コンテンツ生成のための既製のテキスト・ツー・イメージモデルを用いて,第1フレーム条件のパイプラインを設計する。
時間次元の特徴を捉えるため、T2Iモデルの事前訓練された2次元畳み込み層を、新しい時間空間運動学習層に拡張する。
論文 参考訳(メタデータ) (2023-10-16T19:03:19Z) - Control-A-Video: Controllable Text-to-Video Diffusion Models with Motion Prior and Reward Feedback Learning [50.60891619269651]
Control-A-Videoは制御可能なT2V拡散モデルであり、テキストプロンプトやエッジや奥行きマップのような参照制御マップに条件付のビデオを生成することができる。
本稿では,拡散に基づく生成プロセスに,コンテンツの事前と動作を組み込む新しい手法を提案する。
我々のフレームワークは、制御可能なテキスト・ツー・ビデオ生成における既存の最先端手法と比較して、高品質で一貫性のあるビデオを生成する。
論文 参考訳(メタデータ) (2023-05-23T09:03:19Z) - Towards a Unified View on Visual Parameter-Efficient Transfer Learning [96.99924127527002]
本稿では,視覚PETL(visual-PETL)と呼ばれる統一的な視点を持つフレームワークを提案し,トレードオフに影響を与えるさまざまな側面について検討する。
提案したV-PETLフレームワークから派生したSwin-BAPATは、最先端のAdaptFormer-Swinよりも大幅に性能が向上する。
論文 参考訳(メタデータ) (2022-10-03T09:54:39Z) - TNT: Text-Conditioned Network with Transductive Inference for Few-Shot
Video Classification [26.12591949900602]
テキストベースのタスクコンディショナーを定式化し、ビデオの特徴を数ショットの学習タスクに適応させる。
本モデルでは,4つの挑戦的ベンチマークを用いて,数発の動画アクション分類における最先端性能を得る。
論文 参考訳(メタデータ) (2021-06-21T15:08:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。