論文の概要: AI-generated Image Quality Assessment in Visual Communication
- arxiv url: http://arxiv.org/abs/2412.15677v1
- Date: Fri, 20 Dec 2024 08:47:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-23 16:21:50.149639
- Title: AI-generated Image Quality Assessment in Visual Communication
- Title(参考訳): 視覚コミュニケーションにおけるAIによる画像品質評価
- Authors: Yu Tian, Yixuan Li, Baoliang Chen, Hanwei Zhu, Shiqi Wang, Sam Kwong,
- Abstract要約: AIGI-VCは、視覚コミュニケーションにおけるAI生成画像の品質評価データベースである。
データセットは、14の広告トピックと8つの感情タイプにまたがる2500のイメージで構成されている。
粗い人間の嗜好アノテーションときめ細かい嗜好記述を提供し、選好予測、解釈、推論におけるIQAメソッドの能力をベンチマークする。
- 参考スコア(独自算出の注目度): 72.11144790293086
- License:
- Abstract: Assessing the quality of artificial intelligence-generated images (AIGIs) plays a crucial role in their application in real-world scenarios. However, traditional image quality assessment (IQA) algorithms primarily focus on low-level visual perception, while existing IQA works on AIGIs overemphasize the generated content itself, neglecting its effectiveness in real-world applications. To bridge this gap, we propose AIGI-VC, a quality assessment database for AI-Generated Images in Visual Communication, which studies the communicability of AIGIs in the advertising field from the perspectives of information clarity and emotional interaction. The dataset consists of 2,500 images spanning 14 advertisement topics and 8 emotion types. It provides coarse-grained human preference annotations and fine-grained preference descriptions, benchmarking the abilities of IQA methods in preference prediction, interpretation, and reasoning. We conduct an empirical study of existing representative IQA methods and large multi-modal models on the AIGI-VC dataset, uncovering their strengths and weaknesses.
- Abstract(参考訳): 人工知能生成画像(AIGI)の品質を評価することは、現実のシナリオにおけるその応用において重要な役割を果たす。
しかし、従来の画像品質評価(IQA)アルゴリズムは、主に低レベルの視覚的知覚に焦点を当て、既存のIQAは、生成されたコンテンツ自体を過度に強調し、実際のアプリケーションでの有効性を無視している。
このギャップを埋めるため、我々はAIGI-VCを提案する。AIGIは、情報明快さと感情的相互作用の観点から、広告分野におけるAIGIのコミュニケーション性を研究する、視覚コミュニケーションにおけるAI生成画像の品質評価データベースである。
データセットは、14の広告トピックと8つの感情タイプにまたがる2500のイメージで構成されている。
粗い人間の嗜好アノテーションときめ細かい嗜好記述を提供し、選好予測、解釈、推論におけるIQAメソッドの能力をベンチマークする。
我々はAIGI-VCデータセット上で,既存の代表IQA手法と大規模マルチモーダルモデルに関する実証的研究を行い,その強みと弱点を明らかにする。
関連論文リスト
- Quality Assessment for AI Generated Images with Instruction Tuning [58.41087653543607]
我々はまず,AIGCIQA2023+と呼ばれるAIGIのための画像品質評価(IQA)データベースを構築した。
本稿では,AIGIに対する人間の嗜好を評価するためのMINT-IQAモデルを提案する。
論文 参考訳(メタデータ) (2024-05-12T17:45:11Z) - PKU-AIGIQA-4K: A Perceptual Quality Assessment Database for Both Text-to-Image and Image-to-Image AI-Generated Images [1.5265677582796984]
我々はPKU-AIGIQA-4Kという名前のテキスト・ツー・イメージAIGIとイメージ・ツー・イメージAIGIの両方を対象とした大規模な知覚品質評価データベースを構築した。
本研究では,非参照法NR-AIGCIQA,フル参照法FR-AIGCIQA,部分参照法PR-AIGCIQAを含む事前学習モデルに基づく3つの画像品質評価手法を提案する。
論文 参考訳(メタデータ) (2024-04-29T03:57:43Z) - Large Multi-modality Model Assisted AI-Generated Image Quality Assessment [53.182136445844904]
本稿では,AI生成画像品質評価モデル(MA-AGIQA)を提案する。
セマンティックインフォームドガイダンスを使用して意味情報を感知し、慎重に設計されたテキストプロンプトを通してセマンティックベクターを抽出する。
最先端のパフォーマンスを実現し、AI生成画像の品質を評価する上で優れた一般化能力を示す。
論文 参考訳(メタデータ) (2024-04-27T02:40:36Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
画像品質評価(IQA)モデルは意味情報から大きな恩恵を受け、異なる種類のオブジェクトを明瞭に扱うことができる。
十分な注釈付きデータが不足している従来の手法では、セマンティックな認識を得るために、CLIPイメージテキスト事前学習モデルをバックボーンとして使用していた。
近年のアプローチでは、このミスマッチに即時技術を使って対処する試みがあるが、これらの解決策には欠点がある。
本稿では、IQAのための革新的なマルチモーダルプロンプトベースの手法を提案する。
論文 参考訳(メタデータ) (2024-04-23T11:45:32Z) - AIGIQA-20K: A Large Database for AI-Generated Image Quality Assessment [54.93996119324928]
AIGIQA-20Kとして知られる2万のAIGIと420,000の主観評価を備えた、これまでで最大のAIGI主観的品質データベースを作成します。
このデータベース上でベンチマーク実験を行い、16の主流AIGI品質モデルと人間の知覚との対応性を評価する。
論文 参考訳(メタデータ) (2024-04-04T12:12:24Z) - AIGCOIQA2024: Perceptual Quality Assessment of AI Generated Omnidirectional Images [70.42666704072964]
我々はAI生成の全方位画像IQAデータベースAIIGCOIQA2024を構築した。
3つの視点から人間の視覚的嗜好を評価するために、主観的IQA実験を行った。
我々は,データベース上での最先端IQAモデルの性能を評価するためのベンチマーク実験を行った。
論文 参考訳(メタデータ) (2024-04-01T10:08:23Z) - PKU-I2IQA: An Image-to-Image Quality Assessment Database for AI
Generated Images [1.6031185986328562]
我々はPKU-I2IQAという人間の知覚に基づく画像から画像へのAIGCIQAデータベースを構築した。
本研究では,非参照画像品質評価法に基づくNR-AIGCIQAとフル参照画像品質評価法に基づくFR-AIGCIQAの2つのベンチマークモデルを提案する。
論文 参考訳(メタデータ) (2023-11-27T05:53:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。