From Model Based to Learned Regularization in Medical Image Registration: A Comprehensive Review
- URL: http://arxiv.org/abs/2412.15740v1
- Date: Fri, 20 Dec 2024 10:00:36 GMT
- Title: From Model Based to Learned Regularization in Medical Image Registration: A Comprehensive Review
- Authors: Anna Reithmeir, Veronika Spieker, Vasiliki Sideri-Lampretsa, Daniel Rueckert, Julia A. Schnabel, Veronika A. Zimmer,
- Abstract summary: Regularization is a key component in driving the solution toward anatomically meaningful deformations.<n>Regularization is often overlooked or addressed with default approaches, assuming existing methods are sufficient.<n>This review introduces a novel taxonomy that systematically categorizes the diverse range of proposed regularization methods.
- Score: 10.985967613049269
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image registration is fundamental in medical imaging applications, such as disease progression analysis or radiation therapy planning. The primary objective of image registration is to precisely capture the deformation between two or more images, typically achieved by minimizing an optimization problem. Due to its inherent ill-posedness, regularization is a key component in driving the solution toward anatomically meaningful deformations. A wide range of regularization methods has been proposed for both conventional and deep learning-based registration. However, the appropriate application of regularization techniques often depends on the specific registration problem, and no one-fits-all method exists. Despite its importance, regularization is often overlooked or addressed with default approaches, assuming existing methods are sufficient. A comprehensive and structured review remains missing. This review addresses this gap by introducing a novel taxonomy that systematically categorizes the diverse range of proposed regularization methods. It highlights the emerging field of learned regularization, which leverages data-driven techniques to automatically derive deformation properties from the data. Moreover, this review examines the transfer of regularization methods from conventional to learning-based registration, identifies open challenges, and outlines future research directions. By emphasizing the critical role of regularization in image registration, we hope to inspire the research community to reconsider regularization strategies in modern registration algorithms and to explore this rapidly evolving field further.
Related papers
- Implicit Deformable Medical Image Registration with Learnable Kernels [0.6749750044497731]
Deformable medical image registration is an essential task in computer-assisted interventions.<n>Recent AI methods can outperform traditional techniques in accuracy and speed.<n>We introduce a novel implicit registration framework that can predict accurate and reliable deformations.
arXiv Detail & Related papers (2025-06-02T18:27:11Z) - UniReg: Foundation Model for Controllable Medical Image Registration [16.19173225107947]
Learning-based registration approaches lack generalizability across diverse clinical scenarios.
We propose textbfUniReg, the first interactive foundation model for medical image registration.
Our key innovation is a unified framework for diverse registration scenarios, achieved through a conditional deformation field estimation.
arXiv Detail & Related papers (2025-03-17T06:55:01Z) - Deformable Image Registration with Stochastically Regularized
Biomechanical Equilibrium [0.0]
This study introduces a regularization strategy that does not require discretization, making it compatible with current registration frameworks.
The proposed method performs favorably in both synthetic and real datasets, exhibiting an accuracy comparable to current state-of-the-art methods.
arXiv Detail & Related papers (2023-12-22T08:16:47Z) - RIDE: Self-Supervised Learning of Rotation-Equivariant Keypoint
Detection and Invariant Description for Endoscopy [83.4885991036141]
RIDE is a learning-based method for rotation-equivariant detection and invariant description.
It is trained in a self-supervised manner on a large curation of endoscopic images.
It sets a new state-of-the-art performance on matching and relative pose estimation tasks.
arXiv Detail & Related papers (2023-09-18T08:16:30Z) - Learning Homeomorphic Image Registration via Conformal-Invariant
Hyperelastic Regularisation [9.53064372566798]
We propose a novel framework for deformable image registration based on conformal-invariant properties.
Our regulariser enforces the deformation field yielding to be smooth, invertible and orientation-preserving.
We demonstrate, through numerical and visual experiments, that our framework is able to outperform current techniques for image registration.
arXiv Detail & Related papers (2023-03-14T17:47:18Z) - Joint segmentation and discontinuity-preserving deformable registration:
Application to cardiac cine-MR images [74.99415008543276]
Most deep learning-based registration methods assume that the deformation fields are smooth and continuous everywhere in the image domain.
We propose a novel discontinuity-preserving image registration method to tackle this challenge, which ensures globally discontinuous and locally smooth deformation fields.
A co-attention block is proposed in the segmentation component of the network to learn the structural correlations in the input images.
We evaluate our method on the task of intra-subject-temporal image registration using large-scale cinematic cardiac magnetic resonance image sequences.
arXiv Detail & Related papers (2022-11-24T23:45:01Z) - PatchNR: Learning from Small Data by Patch Normalizing Flow
Regularization [57.37911115888587]
We introduce a regularizer for the variational modeling of inverse problems in imaging based on normalizing flows.
Our regularizer, called patchNR, involves a normalizing flow learned on patches of very few images.
arXiv Detail & Related papers (2022-05-24T12:14:26Z) - Self-Supervised Domain Adaptation for Diabetic Retinopathy Grading using
Vessel Image Reconstruction [61.58601145792065]
We learn invariant target-domain features by defining a novel self-supervised task based on retinal vessel image reconstructions.
It can be shown that our approach outperforms existing domain strategies.
arXiv Detail & Related papers (2021-07-20T09:44:07Z) - A Deep Discontinuity-Preserving Image Registration Network [73.03885837923599]
Most deep learning-based registration methods assume that the desired deformation fields are globally smooth and continuous.
We propose a weakly-supervised Deep Discontinuity-preserving Image Registration network (DDIR) to obtain better registration performance and realistic deformation fields.
We demonstrate that our method achieves significant improvements in registration accuracy and predicts more realistic deformations, in registration experiments on cardiac magnetic resonance (MR) images.
arXiv Detail & Related papers (2021-07-09T13:35:59Z) - Evaluation of Complexity Measures for Deep Learning Generalization in
Medical Image Analysis [77.34726150561087]
PAC-Bayes flatness-based and path norm-based measures produce the most consistent explanation for the combination of models and data.
We also investigate the use of multi-task classification and segmentation approach for breast images.
arXiv Detail & Related papers (2021-03-04T20:58:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.