Implicit Deformable Medical Image Registration with Learnable Kernels
- URL: http://arxiv.org/abs/2506.02150v1
- Date: Mon, 02 Jun 2025 18:27:11 GMT
- Title: Implicit Deformable Medical Image Registration with Learnable Kernels
- Authors: Stefano Fogarollo, Gregor Laimer, Reto Bale, Matthias Harders,
- Abstract summary: Deformable medical image registration is an essential task in computer-assisted interventions.<n>Recent AI methods can outperform traditional techniques in accuracy and speed.<n>We introduce a novel implicit registration framework that can predict accurate and reliable deformations.
- Score: 0.6749750044497731
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deformable medical image registration is an essential task in computer-assisted interventions. This problem is particularly relevant to oncological treatments, where precise image alignment is necessary for tracking tumor growth, assessing treatment response, and ensuring accurate delivery of therapies. Recent AI methods can outperform traditional techniques in accuracy and speed, yet they often produce unreliable deformations that limit their clinical adoption. In this work, we address this challenge and introduce a novel implicit registration framework that can predict accurate and reliable deformations. Our insight is to reformulate image registration as a signal reconstruction problem: we learn a kernel function that can recover the dense displacement field from sparse keypoint correspondences. We integrate our method in a novel hierarchical architecture, and estimate the displacement field in a coarse-to-fine manner. Our formulation also allows for efficient refinement at test time, permitting clinicians to easily adjust registrations when needed. We validate our method on challenging intra-patient thoracic and abdominal zero-shot registration tasks, using public and internal datasets from the local University Hospital. Our method not only shows competitive accuracy to state-of-the-art approaches, but also bridges the generalization gap between implicit and explicit registration techniques. In particular, our method generates deformations that better preserve anatomical relationships and matches the performance of specialized commercial systems, underscoring its potential for clinical adoption.
Related papers
- Resolving the Ambiguity of Complete-to-Partial Point Cloud Registration for Image-Guided Liver Surgery with Patches-to-Partial Matching [3.6999273555552548]
In image-guided liver surgery, the initial rigid alignment between preoperative and intraoperative data is crucial.<n>We propose a patches-to-partial matching strategy as a plug-and-play module to resolve the ambiguity.<n>It has proven effective and efficient in improving registration performance for cases with limited intraoperative visibility.
arXiv Detail & Related papers (2024-12-26T18:58:29Z) - Efficient MedSAMs: Segment Anything in Medical Images on Laptop [69.28565867103542]
We organized the first international competition dedicated to promptable medical image segmentation.<n>The top teams developed lightweight segmentation foundation models and implemented an efficient inference pipeline.<n>The best-performing algorithms have been incorporated into the open-source software with a user-friendly interface to facilitate clinical adoption.
arXiv Detail & Related papers (2024-12-20T17:33:35Z) - From Model Based to Learned Regularization in Medical Image Registration: A Comprehensive Review [10.985967613049269]
Regularization is a key component in driving the solution toward anatomically meaningful deformations.<n>Regularization is often overlooked or addressed with default approaches, assuming existing methods are sufficient.<n>This review introduces a novel taxonomy that systematically categorizes the diverse range of proposed regularization methods.
arXiv Detail & Related papers (2024-12-20T10:00:36Z) - Learning Homeomorphic Image Registration via Conformal-Invariant
Hyperelastic Regularisation [9.53064372566798]
We propose a novel framework for deformable image registration based on conformal-invariant properties.
Our regulariser enforces the deformation field yielding to be smooth, invertible and orientation-preserving.
We demonstrate, through numerical and visual experiments, that our framework is able to outperform current techniques for image registration.
arXiv Detail & Related papers (2023-03-14T17:47:18Z) - Joint segmentation and discontinuity-preserving deformable registration:
Application to cardiac cine-MR images [74.99415008543276]
Most deep learning-based registration methods assume that the deformation fields are smooth and continuous everywhere in the image domain.
We propose a novel discontinuity-preserving image registration method to tackle this challenge, which ensures globally discontinuous and locally smooth deformation fields.
A co-attention block is proposed in the segmentation component of the network to learn the structural correlations in the input images.
We evaluate our method on the task of intra-subject-temporal image registration using large-scale cinematic cardiac magnetic resonance image sequences.
arXiv Detail & Related papers (2022-11-24T23:45:01Z) - Real-time landmark detection for precise endoscopic submucosal
dissection via shape-aware relation network [51.44506007844284]
We propose a shape-aware relation network for accurate and real-time landmark detection in endoscopic submucosal dissection surgery.
We first devise an algorithm to automatically generate relation keypoint heatmaps, which intuitively represent the prior knowledge of spatial relations among landmarks.
We then develop two complementary regularization schemes to progressively incorporate the prior knowledge into the training process.
arXiv Detail & Related papers (2021-11-08T07:57:30Z) - A Deep Discontinuity-Preserving Image Registration Network [73.03885837923599]
Most deep learning-based registration methods assume that the desired deformation fields are globally smooth and continuous.
We propose a weakly-supervised Deep Discontinuity-preserving Image Registration network (DDIR) to obtain better registration performance and realistic deformation fields.
We demonstrate that our method achieves significant improvements in registration accuracy and predicts more realistic deformations, in registration experiments on cardiac magnetic resonance (MR) images.
arXiv Detail & Related papers (2021-07-09T13:35:59Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
coarse parametrisation in propagation distance, position errors and partial coherence frequently menaces the experiment viability.
A modern Deep Learning framework is used to correct autonomously the setup incoherences, thus improving the quality of a ptychography reconstruction.
We tested our system on both synthetic datasets and also on real data acquired at the TwinMic beamline of the Elettra synchrotron facility.
arXiv Detail & Related papers (2021-05-18T10:15:17Z) - An Auto-Context Deformable Registration Network for Infant Brain MRI [54.57017031561516]
We propose an infant-dedicated deep registration network that uses the auto-context strategy to gradually refine the deformation fields.
Our method estimates the deformation fields by invoking a single network multiple times for iterative deformation refinement.
Experimental results in comparison with state-of-the-art registration methods indicate that our method achieves higher accuracy while at the same time preserves the smoothness of the deformation fields.
arXiv Detail & Related papers (2020-05-19T06:00:13Z) - Learning Deformable Registration of Medical Images with Anatomical
Constraints [4.397224870979238]
Deformable image registration is a fundamental problem in the field of medical image analysis.
We learn global non-linear representations of image anatomy using segmentation masks, and employ them to constraint the registration process.
Our experiments show that the proposed anatomically constrained registration model produces more realistic and accurate results than state-of-the-art methods.
arXiv Detail & Related papers (2020-01-20T17:44:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.