Extracting Interpretable Task-Specific Circuits from Large Language Models for Faster Inference
- URL: http://arxiv.org/abs/2412.15750v1
- Date: Fri, 20 Dec 2024 10:11:44 GMT
- Title: Extracting Interpretable Task-Specific Circuits from Large Language Models for Faster Inference
- Authors: Jorge García-Carrasco, Alejandro Maté, Juan Trujillo,
- Abstract summary: Large Language Models (LLMs) have shown impressive performance across a wide range of tasks.
We propose a novel approach to automatically extract the subset of the LLM that properly performs a targeted task.
We show that the resulting models are considerably smaller, reducing the number of parameters up to 82.77% and (ii) more interpretable.
- Score: 44.99833362998488
- License:
- Abstract: Large Language Models (LLMs) have shown impressive performance across a wide range of tasks. However, the size of LLMs is steadily increasing, hindering their application on computationally constrained environments. On the other hand, despite their general capabilities, there are many situations where only one specific task is performed, rendering all other capabilities unnecessary and wasteful. This leads us to the following question: Is it possible to extract the minimal subset from an LLM that is able to perform a specific task in a faster, standalone manner? Recent works on Mechanistic Interpretability (MI) have shown that specific tasks are performed by a localized subset of components, or circuit. However, current techniques used to identify the circuit cannot be used to extract it for its standalone usage. In this work, we propose a novel approach to automatically extract the subset of the LLM that properly performs a targeted task requiring no additional training and a small amount of data samples. We evaluate our approach on different tasks and show that the resulting models are (i) considerably smaller, reducing the number of parameters up to 82.77% and (ii) more interpretable, as they focus on the circuit that is used to carry out the specific task, and can therefore be understood using MI techniques.
Related papers
- Improving Small-Scale Large Language Models Function Calling for Reasoning Tasks [0.8425561594225592]
This study introduces a novel framework for training smaller language models in function calling.
It focuses on specific logical and mathematical reasoning tasks.
The approach aims to improve performances of small-scale models for these tasks using function calling.
arXiv Detail & Related papers (2024-10-24T16:27:35Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - MetaGPT: Merging Large Language Models Using Model Exclusive Task Arithmetic [6.46176287368784]
We propose textbfModel textbfExclusive textbfTask textbfArithmetic for merging textbfGPT-scale models.
Our proposed MetaGPT is data-agnostic and bypasses the heavy search process, making it cost-effective and easy to implement for LLMs.
arXiv Detail & Related papers (2024-06-17T10:12:45Z) - Language Models can Exploit Cross-Task In-context Learning for Data-Scarce Novel Tasks [22.66167973623777]
Large Language Models (LLMs) have transformed NLP with their remarkable In-context Learning (ICL) capabilities.
This paper investigates whether LLMs can generalize from labeled examples of predefined tasks to novel tasks.
We show that cross-task prompting leads to a remarkable performance boost of 107% for LLaMA-2 7B, 18.6% for LLaMA-2 13B, and 3.2% for GPT 3.5 on average over zero-shot prompting.
arXiv Detail & Related papers (2024-05-17T05:20:49Z) - Cross-Task Affinity Learning for Multitask Dense Scene Predictions [5.939164722752263]
Multitask learning (MTL) has become prominent for its ability to predict multiple tasks jointly.
We introduce the Cross-Task Affinity Learning (CTAL) module, a lightweight framework that enhances task refinement in multitask networks.
Our results demonstrate state-of-the-art MTL performance for both CNN and transformer backbones, using significantly fewer parameters than single-task learning.
arXiv Detail & Related papers (2024-01-20T05:31:47Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
Large Language Model (LLM) agents significantly extend the capabilities of standalone LLMs.
We propose a novel approach that decomposes the aforementioned capabilities into a planner, caller, and summarizer.
This modular framework facilitates individual updates and the potential use of smaller LLMs for building each capability.
arXiv Detail & Related papers (2024-01-14T16:17:07Z) - INTERS: Unlocking the Power of Large Language Models in Search with Instruction Tuning [59.07490387145391]
Large language models (LLMs) have demonstrated impressive capabilities in various natural language processing tasks.
Their application to information retrieval (IR) tasks is still challenging due to the infrequent occurrence of many IR-specific concepts in natural language.
We introduce a novel instruction tuning dataset, INTERS, encompassing 20 tasks across three fundamental IR categories.
arXiv Detail & Related papers (2024-01-12T12:10:28Z) - DiSparse: Disentangled Sparsification for Multitask Model Compression [92.84435347164435]
DiSparse is a simple, effective, and first-of-its-kind multitask pruning and sparse training scheme.
Our experimental results demonstrate superior performance on various configurations and settings.
arXiv Detail & Related papers (2022-06-09T17:57:46Z) - Sparsely Activated Mixture-of-Experts are Robust Multi-Task Learners [67.5865966762559]
We study whether sparsely activated Mixture-of-Experts (MoE) improve multi-task learning.
We devise task-aware gating functions to route examples from different tasks to specialized experts.
This results in a sparsely activated multi-task model with a large number of parameters, but with the same computational cost as that of a dense model.
arXiv Detail & Related papers (2022-04-16T00:56:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.