Language Models can Exploit Cross-Task In-context Learning for Data-Scarce Novel Tasks
- URL: http://arxiv.org/abs/2405.10548v3
- Date: Wed, 12 Jun 2024 08:00:19 GMT
- Title: Language Models can Exploit Cross-Task In-context Learning for Data-Scarce Novel Tasks
- Authors: Anwoy Chatterjee, Eshaan Tanwar, Subhabrata Dutta, Tanmoy Chakraborty,
- Abstract summary: Large Language Models (LLMs) have transformed NLP with their remarkable In-context Learning (ICL) capabilities.
This paper investigates whether LLMs can generalize from labeled examples of predefined tasks to novel tasks.
We show that cross-task prompting leads to a remarkable performance boost of 107% for LLaMA-2 7B, 18.6% for LLaMA-2 13B, and 3.2% for GPT 3.5 on average over zero-shot prompting.
- Score: 22.66167973623777
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have transformed NLP with their remarkable In-context Learning (ICL) capabilities. Automated assistants based on LLMs are gaining popularity; however, adapting them to novel tasks is still challenging. While colossal models excel in zero-shot performance, their computational demands limit widespread use, and smaller language models struggle without context. This paper investigates whether LLMs can generalize from labeled examples of predefined tasks to novel tasks. Drawing inspiration from biological neurons and the mechanistic interpretation of the Transformer architecture, we explore the potential for information sharing across tasks. We design a cross-task prompting setup with three LLMs and show that LLMs achieve significant performance improvements despite no examples from the target task in the context. Cross-task prompting leads to a remarkable performance boost of 107% for LLaMA-2 7B, 18.6% for LLaMA-2 13B, and 3.2% for GPT 3.5 on average over zero-shot prompting, and performs comparable to standard in-context learning. The effectiveness of generating pseudo-labels for in-task examples is demonstrated, and our analyses reveal a strong correlation between the effect of cross-task examples and model activation similarities in source and target input tokens. This paper offers a first-of-its-kind exploration of LLMs' ability to solve novel tasks based on contextual signals from different task examples.
Related papers
- SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - ZeroDL: Zero-shot Distribution Learning for Text Clustering via Large Language Models [5.011816280731356]
We propose a simple yet effective method to contextualize a task toward a specific large language model (LLMs)
We show the effectiveness of this approach in text clustering tasks, and also highlight the importance of the contextualization through examples of the above procedure.
arXiv Detail & Related papers (2024-06-19T08:48:05Z) - MetaGPT: Merging Large Language Models Using Model Exclusive Task Arithmetic [6.46176287368784]
We propose textbfModel textbfExclusive textbfTask textbfArithmetic for merging textbfGPT-scale models.
Our proposed MetaGPT is data-agnostic and bypasses the heavy search process, making it cost-effective and easy to implement for LLMs.
arXiv Detail & Related papers (2024-06-17T10:12:45Z) - Knowledgeable Agents by Offline Reinforcement Learning from Large Language Model Rollouts [10.929547354171723]
This paper introduces Knowledgeable Agents from Language Model Rollouts (KALM)
It extracts knowledge from large language models (LLMs) in the form of imaginary rollouts that can be easily learned by the agent through offline reinforcement learning methods.
It achieves a success rate of 46% in executing tasks with unseen goals, substantially surpassing the 26% success rate achieved by baseline methods.
arXiv Detail & Related papers (2024-04-14T13:19:40Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
Aligned large language models (LLMs) demonstrate exceptional capabilities in task-solving, following instructions, and ensuring safety.
Existing continual learning benchmarks lack sufficient challenge for leading aligned LLMs.
We introduce TRACE, a novel benchmark designed to evaluate continual learning in LLMs.
arXiv Detail & Related papers (2023-10-10T16:38:49Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z) - OverPrompt: Enhancing ChatGPT through Efficient In-Context Learning [49.38867353135258]
We propose OverPrompt, leveraging the in-context learning capability of LLMs to handle multiple task inputs.
Our experiments show that OverPrompt can achieve cost-efficient zero-shot classification without causing significant detriment to task performance.
arXiv Detail & Related papers (2023-05-24T10:08:04Z) - Multi-Task Instruction Tuning of LLaMa for Specific Scenarios: A
Preliminary Study on Writing Assistance [60.40541387785977]
Small foundational models can display remarkable proficiency in tackling diverse tasks when fine-tuned using instruction-driven data.
In this work, we investigate a practical problem setting where the primary focus is on one or a few particular tasks rather than general-purpose instruction following.
Experimental results show that fine-tuning LLaMA on writing instruction data significantly improves its ability on writing tasks.
arXiv Detail & Related papers (2023-05-22T16:56:44Z) - Exploring and Predicting Transferability across NLP Tasks [115.6278033699853]
We study the transferability between 33 NLP tasks across three broad classes of problems.
Our results show that transfer learning is more beneficial than previously thought.
We also develop task embeddings that can be used to predict the most transferable source tasks for a given target task.
arXiv Detail & Related papers (2020-05-02T09:39:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.